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The Longest Increasing Subsequence problem

Let us consider a uniform random permutation in Sn. What can be said
about the length Ln of a longest increasing subsequence?

Example: for σ = (3, 1, 6, 7, 2, 5, 4), we have L(σ) = 3.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 4 / 31



The Longest Increasing Subsequence problem

Let us consider a uniform random permutation in Sn. What can be said
about the length Ln of a longest increasing subsequence?

Example: for σ = (3, 1, 6, 7, 2, 5, 4), we have L(σ) = 3.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 4 / 31



Some history of the LIS problem

The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that Ln
should be of order

√
n.

It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that Ln/

√
n converges in probability to a constant c ∈ [π/2, e].

Vershik-Kerov and Logan-Shepp (1977) proved independently that
c = 2, as a consequence of a more general limit shape theorem for
the Plancherel measure on partitions (to be defined).

Baik-Deift-Johansson (1999) proved the most precise result

P
(
Ln − 2

√
n

n1/6
≤ s

)
= FGUE (s), n→∞

where FGUE is the Tracy-Widow GUE distribution.

See Romik’s book for a detailed account of this fascinating story, and
Kammoun’s recent paper for extensions to other families of random
permutations (universality).
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Our focus here

The approach of Baik, Deift and Johansson (1999) was based on
Riemann-Hilbert techniques.

Shortly after their paper, another proof was given by Borodin,
Okounkov and Olshanski (2000) using determinantal point processes.

Okounkov (2001) introduced Schur measures generalizing the
Plancherel measure on partitions. He proved their determinantal
nature using fermions.

Okounkov and Reshetikhin (2003) introduced Schur processes, a
further generalization that allows to study random plane partitions.

There were many further works, but for some reason these did not use
much the language of fermions, and used instead that of random
matrix theory (Eynard-Mehta theorem, etc).

In this talk I will explain
how to prove BDJ’s theorem using fermions.
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Fermions and Maya diagrams
Think of a collection of boxes labeled by the half-integers (“energy levels”,
positive or negative):
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−5
2

−7
2

−9
2· · · · · ·

Each box may contain at most one particle (•). No particle = “hole” (◦).
Maya diagram: there are finitely many particles on the positive side and
finitely many holes on the negative side. Vacuum (∅):

1
2

3
2

5
2

7
2

9
2

−1
2

−3
2

−5
2

−7
2

−9
2· · · · · ·

Any other Maya diagram is obtained by a finite number of operations:

adding a particle with positive energy

removing a particle with negative energy

(total energy increases in both cases!)
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Fock space
The fermionic Fock space F is the Hilbert space with basis index by Maya
diagrams.
A element of F represents the wave function of a system of (infinitely)
many fermions.
There is an underlying Hilbert space H1 describing the possible states of
one particle, whose basis is indexed by half-integers.

1
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5
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7
2

9
2

−1
2

−3
2

−5
2

−7
2

−9
2· · · · · ·

| − 3/2〉

A Maya diagram may be thought as an infinite wedge product (Slater
determinant) of one-particle basis states, which has a finite total energy.
Physical relevance: description of the low-energy excitations of a gapless
system of many fermions (1D). Energy 0 corresponds to the Fermi level.
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Observables

Let m be a Maya diagram and |m〉 the corresponding basis vector in F .
We consider observables that are diagonal in this basis.

Particle number operators: for k ∈ Z′ = Z + 1/2,

Nk |m〉 =

{
|m〉 if m has a particle at position k,

0 if m has a hole at position k .

Charge/energy operators:

C =
∑
k∈Z′

:Nk :, H =
∑
k∈Z′

k :Nk :

where we set :Nk := Nk − 〈∅|Nk |∅〉. Note that H ≥ 0!

Next we define an important family of (nonhermitian) operators, the
creation and annihilation operators ψk and ψ∗k for k ∈ Z′.
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Creation and annihilation operators

ψ9/2

m

m′

ψ9/2|m〉 = |m′〉
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Creation and annihilation operators

ψ5/2

m

m′

ψ5/2|m〉 = −|m′〉

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 14 / 31



Creation and annihilation operators

ψ7/2

m

m′

ψ7/2|m〉 = 0
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Creation and annihilation operators

ψ∗7/2

m

m′

ψ∗7/2|m〉 = |m′〉

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 14 / 31



Creation and annihilation operators

m

m′

ψ∗1/2|m〉 = −|m′〉

ψ∗1/2
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Creation and annihilation operators

ψ∗−1/2

m

m′

ψ∗−1/2|m〉 = 0
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Creation and annihilation operators

It is easy to see that ψk and ψ∗k are adjoint to one another.

In the infinite wedge picture, we have

ψk |m〉 = |k〉 ∧ |m〉

where |k〉 is a one-particle state.
We have the canonical anticommutation relations (CAR)

{ψk , ψ
∗
` } = δk,`, {ψk , ψ`} = {ψ∗k , ψ∗` } = 0

where {A,B} := AB + BA denotes the anticommutator.
We also have

Nk = ψkψ
∗
k , ψk |∅〉 = ψ∗−k |∅〉 = 0 for k < 0.

Any operator can be expressed in terms of the creation/annihilation
operators!
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Bilinear operators

Using the CAR, we see that the operators ψiψ
∗
j form a Lie algebra:

[ψiψ
∗
j , ψkψ

∗
` ] = δj ,kψiψ

∗
` − δi ,`ψkψ

∗
j

isomorphic to gl(∞). Here [A,B] := AB − BA is the ordinary
commutator.

In fact, ψiψ
∗
j represents the action on F of a one-particle operator.

Up to technicalities (normal ordering...) we may extend this algebra by
allowing infinite linear combinations.

Every operator acting on the one-particle Hilbert space H1 can be
promoted as an operator on F (second quantization). Of course there are
more general operators on F such as two-particle operators
NkNk ′ = ψkψ

∗
kψk ′ψ

∗
k ′ , etc.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 16 / 31



Bilinear operators

Using the CAR, we see that the operators ψiψ
∗
j form a Lie algebra:

[ψiψ
∗
j , ψkψ

∗
` ] = δj ,kψiψ

∗
` − δi ,`ψkψ

∗
j

isomorphic to gl(∞). Here [A,B] := AB − BA is the ordinary
commutator.

In fact, ψiψ
∗
j represents the action on F of a one-particle operator.

Up to technicalities (normal ordering...) we may extend this algebra by
allowing infinite linear combinations.

Every operator acting on the one-particle Hilbert space H1 can be
promoted as an operator on F (second quantization). Of course there are
more general operators on F such as two-particle operators
NkNk ′ = ψkψ

∗
kψk ′ψ

∗
k ′ , etc.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 16 / 31



Bilinear operators

Using the CAR, we see that the operators ψiψ
∗
j form a Lie algebra:

[ψiψ
∗
j , ψkψ

∗
` ] = δj ,kψiψ

∗
` − δi ,`ψkψ

∗
j

isomorphic to gl(∞). Here [A,B] := AB − BA is the ordinary
commutator.

In fact, ψiψ
∗
j represents the action on F of a one-particle operator.

Up to technicalities (normal ordering...) we may extend this algebra by
allowing infinite linear combinations.

Every operator acting on the one-particle Hilbert space H1 can be
promoted as an operator on F (second quantization). Of course there are
more general operators on F such as two-particle operators
NkNk ′ = ψkψ

∗
kψk ′ψ

∗
k ′ , etc.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 16 / 31



Bilinear operators

Using the CAR, we see that the operators ψiψ
∗
j form a Lie algebra:

[ψiψ
∗
j , ψkψ

∗
` ] = δj ,kψiψ

∗
` − δi ,`ψkψ

∗
j

isomorphic to gl(∞). Here [A,B] := AB − BA is the ordinary
commutator.

In fact, ψiψ
∗
j represents the action on F of a one-particle operator.

Up to technicalities (normal ordering...) we may extend this algebra by
allowing infinite linear combinations.

Every operator acting on the one-particle Hilbert space H1 can be
promoted as an operator on F (second quantization).

Of course there are
more general operators on F such as two-particle operators
NkNk ′ = ψkψ

∗
kψk ′ψ

∗
k ′ , etc.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 16 / 31



Bilinear operators

Using the CAR, we see that the operators ψiψ
∗
j form a Lie algebra:

[ψiψ
∗
j , ψkψ

∗
` ] = δj ,kψiψ

∗
` − δi ,`ψkψ

∗
j

isomorphic to gl(∞). Here [A,B] := AB − BA is the ordinary
commutator.

In fact, ψiψ
∗
j represents the action on F of a one-particle operator.

Up to technicalities (normal ordering...) we may extend this algebra by
allowing infinite linear combinations.

Every operator acting on the one-particle Hilbert space H1 can be
promoted as an operator on F (second quantization). Of course there are
more general operators on F such as two-particle operators
NkNk ′ = ψkψ

∗
kψk ′ψ

∗
k ′ , etc.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 16 / 31



Bosonic operators

Of particular interest are the bosonic operators

αn :=
∑
k∈Z′

ψk−nψ
∗
k , n ∈ Z \ {0}

whose action makes sense on F (finitely many terms contribute when
acting on |m〉).

For n = 0, α0 =
∑

k∈Z′ :ψkψ
∗
k is the charge operator C .

They satisfy the canonical commutation relations

[αn, αm] = nδn,−m

and αn = α∗−n.
(The boson-fermion correspondence states that the operators ψk , ψ

∗
k can

be reconstructed from the bosonic operators.)
In the following we will mostly consider the bosonic operators α = α1 and
α∗ = α−1. The hermitian operator α + α∗ describes a “hopping”
dynamics.
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Wick’s lemma
Before we move on to the connection with the LIS problem, let us make
that with determinantal processes. Let 〈O〉 := 〈∅|O|∅〉 denote the vacuum
expectation value of an operator O.

Wick’s lemma (see Gaudin 1960 for a simple proof using CAR)

Let ϕ1, ϕ3, . . . , ϕ2n−1 denote linear combinations of the ψk ’s and
ϕ∗2, ϕ

∗
4, . . . , ϕ

∗
2n denote linear combinations of the ψ∗k ’s. Then we have

〈ϕ1ϕ
∗
2ϕ3ϕ

∗
4 · · ·ϕ2n−1ϕ

∗
2n〉 = det

1≤i ,j≤n
Ci ,j

where Ci ,j =

{
〈ϕ2i−1ϕ

∗
2j〉 if i ≤ j

−〈ϕ∗2jϕ2i−1〉 if i > j
(“time-ordered correlator”).

In fact it also holds with other expectations values (“quasi-free states”):

〈m|O|m〉 for any Maya diagram m,

〈∅|e itH̃Oe−itH̃ |∅〉 for any bilinear (“free”) Hamiltonian H̃,
the grand canonical finite-temperature e.v. 1

ZTr(Oe−β(H−µC))...
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Wick’s lemma

Recall that Nx = ψxψ
∗
x measures the particle number at position x . Then,

for distinct positions x1, . . . , xn we get that

〈Nx1 · · ·Nxn〉 = det
1≤i ,j≤n

K (xi , xj)

where K (x , x ′) = 〈ψxψ
∗
x ′〉 is the correlation kernel.

There is also a natural way to construct a time-extended process using
time-dependent operators (Heisenberg picture):

Nx(t) = e itH̃Nxe
−itH̃

with H̃ a free Hamiltonian. The key fact is that Nx(t) remains a bilinear
combination of creation/annihilation operators.
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From Maya diagrams to Young diagrams

There is a combinatorial correspondence between Maya diagrams and
Young diagrams (aka integer partitions).

In this picture, a particle hopping one site to the right corresponds to a
box being added to the Young diagram.
Therefore we have

α∗|λ〉 =
∑
|λ′〉

where the sum runs over all λ′ obtained by adding a box to λ.
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Standard Young tableaux
Let λ be a Young diagram with n boxes.

A standard Young tableau (SYT) of shape λ is a numbering of the boxes
of λ by the integers {1, . . . , n} which is “increasing”.
It may be viewed as a sequence of Young diagrams, starting from the
empty diagram ∅ and ending with λ, where we add one box at a time.
Therefore

dλ := 〈λ|(α∗)n|∅〉
is equal to the number of SYT of shape λ.
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Connection with the LIS problem

It is known that permutations are closely related with Young
diagrams/tableaux: the Robinson-Schensted correspondence states that
there is a bijection between:

permutations σ of {1, . . . , n},
and triples (λ,T ,T ′) where λ is a Young diagram with n boxes and
T ,T ′ are two SYT of shape λ.

In this correspondence the length of a longest increasing subsequence L(σ)
is equal to the length λ1 of the first row of λ.

Therefore, the LIS problem becomes a question about the Plancherel
measure on Young diagrams:

Prob(λ) =
d2
λ

n!
.

In turn, it becomes a question about Maya diagrams: λ1 < ` iff the Maya
diagram of λ contains no particle in the interval [`+ 1/2,∞).
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Poissonized Plancherel measure

It proves convenient to take the size n to be a Poisson random variable,
and consider the poissonized Plancherel measure

Prob(λ) =
d2
λ

|λ|!x
2|λ|e−x

2
.

For x →∞ the size |λ| concentrates around x .

But we have
dλ
|λ|!x

|λ| = 〈λ|exα∗ |∅〉

and therefore
Prob(λ) = 〈∅|exα|λ〉〈λ|exα∗ |∅〉e−x2

.

We recognize a quantum measurement with respect to the “coherent”
state exα

∗−x2/2|∅〉. Wick’s theorem holds hence we find that the
associated (random) Maya diagram is a determinantal point process.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 25 / 31



Poissonized Plancherel measure

It proves convenient to take the size n to be a Poisson random variable,
and consider the poissonized Plancherel measure

Prob(λ) =
d2
λ

|λ|!x
2|λ|e−x

2
.

For x →∞ the size |λ| concentrates around x .
But we have

dλ
|λ|!x

|λ| = 〈λ|exα∗ |∅〉

and therefore
Prob(λ) = 〈∅|exα|λ〉〈λ|exα∗ |∅〉e−x2

.

We recognize a quantum measurement with respect to the “coherent”
state exα

∗−x2/2|∅〉. Wick’s theorem holds hence we find that the
associated (random) Maya diagram is a determinantal point process.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 25 / 31



Poissonized Plancherel measure

It proves convenient to take the size n to be a Poisson random variable,
and consider the poissonized Plancherel measure

Prob(λ) =
d2
λ

|λ|!x
2|λ|e−x

2
.

For x →∞ the size |λ| concentrates around x .
But we have

dλ
|λ|!x

|λ| = 〈λ|exα∗ |∅〉

and therefore
Prob(λ) = 〈∅|exα|λ〉〈λ|exα∗ |∅〉e−x2

.

We recognize a quantum measurement with respect to the “coherent”
state exα

∗−x2/2|∅〉. Wick’s theorem holds hence we find that the
associated (random) Maya diagram is a determinantal point process.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 25 / 31



Poissonized Plancherel measure

It proves convenient to take the size n to be a Poisson random variable,
and consider the poissonized Plancherel measure

Prob(λ) =
d2
λ

|λ|!x
2|λ|e−x

2
.

For x →∞ the size |λ| concentrates around x .
But we have

dλ
|λ|!x

|λ| = 〈λ|exα∗ |∅〉

and therefore
Prob(λ) = 〈∅|exα|λ〉〈λ|exα∗ |∅〉e−x2

.

We recognize a quantum measurement with respect to the “coherent”
state exα

∗−x2/2|∅〉. Wick’s theorem holds hence we find that the
associated (random) Maya diagram is a determinantal point process.

Jérémie Bouttier (CEA/ENS de Lyon) Fermions in combinatorics 7 February 2019 25 / 31



The discrete Bessel kernel

Using the CAR it is possible to compute explicitly the correlation kernel:

K (i , j) = 〈∅|exαψiψ
∗
j e

xα∗ |∅〉e−x2

=
∑
`<0

Ji−`(2x)Jj−`(2x)

with Jn the Bessel function of the first kind.

Here vi := Ji−`(2x) may be thought as a one-particle eigenfunction:

ivi − x(vi−1 + vi+1) = `vi .

Thus K may be understood as the projector on the space of states with
negative eigenvalue.
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Asymptotics
The following asymptotic analysis of the discrete Bessel kernel was done
by Borodin, Okounkov and Olshanski (2000).

First it is natural to analyze the one-point function K (i , i). We let the
poissonization parameter x →∞ keeping y = i/x fixed:

lim
x→∞

K (xy , xy) = ρ(y) =


arccos(y/2)

π if y ∈ (−2, 2),

1 if y ≤ −2,

0 if y ≥ 2.
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We recover the Vershik-Kerov-Logan-Shepp limit shape.
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Bulk asymptotics: discrete sine kernel
More generally we have

lim
x→∞

i/x , j/x→y
j−i=d fixed

K (i , j) =
sin(ρ(y)πd)

πd
.

It tends to 0 as d →∞: decorrelation.
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This bulk limit is universal in discrete combinatorial models (dimers...).
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Edge asymptotics
Now let us zoom on the edge of the limit shape, where ρ vanishes. Here
the typical distance between particles is of order x−1/3 so we need to
rescale:

lim
x→∞

x1/3K (2x + sx1/3, 2x + tx1/3) = KAi(s, t)

where KAi is the Airy kernel

KAi(s, t) =

ˆ ∞
0

Ai(s + u) Ai(t + u)du

and Ai is the Airy function.

This essentially proves the BDJ theorem:

P
(
λ1 ≤ 2x + sx1/3

)
= det(I − K )`2(b2x+sx1/3c,∞)

→ det(I − KAi)L2(s,∞) = FGUE (s).

(The first equality is a general property of DPPs, the convergence of
Fredholm determinants is easy to justify, and the last equality is known.)
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Conclusion

We have seen how to prove the Baik-Deift-Johansson theorem using
fermions. This approach is essentially due to Okounkov and collaborators
in the 2000’s.

My own contributions, not discussed in this talk, in the more general
context of Schur processes:

the case of positive temperature (involving the finite-temperature Airy
kernel), see arXiv:1807.09022 [math-ph],

the “free boundary case” (involving pfaffian point processes, the
Tracy-Widom GOE/GSE distributions, and “superconducting”
fermionic states), see arXiv:1704.05809 [math.PR].
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