

Quantum signal processing in electron quantum optics

P. Degiovanni, C. Cabart, B. Roussel (ENS Lyon)

G. Fève, A. Marguerite, R. Bisognin (LPA, ENS Paris)

European Research Council Established by the European Commission

DPP-fermions Lille 2018

école normale supérieure de Lyon

- A. Marguerite *et al*, Physica Status Solidi B **254**, 1600618 (2017) B. Roussel et al, Physica Status Solidi B 254, 1600621 (2017) A. Marguerite et al, arXiv:1710.11181 B. Roussel, PhD thesis (tel-01730943)

- Introduction
- Lessons from quantum optics
- Electron quantum optics
- Conclusion & perspectives

• Signal processing for quantum electrical currents

Signal processing

An enabling technology that aims at processing, transferring and retrieving information carried in various physical formats called « signals »...

J. Mourra, IEEESignal Process. Mag 26, 6 (2009).

Introduction

Quantum signal processing

Light beams

Microwave radiation

An enabling technology that aims at processing, transferring and retrieving classical or quantum information carried by various quantum states called « quantum signals »...

DPP-fermions Lille 2018

Electrical currents

How to characterize the state of a quantum beam?

- What are the quantum signals carried by the beam ?
- How to describe them in a simple way ?

Experimental aspects

- Sources ?
- Analyzers ?

DPP-fermions Lille 2018

Theoretical aspects

- Description of a quantum beam ?
- Tomography ?
- Signal processing ?

• Introduction

- Lessons from quantum optics •
- Electron quantum optics
- Conclusion & perspectives

• Signal processing for quantum electrical currents

From classical to quantum optics

J.C. Maxwell

R. Hanbury Brown

DPP-fermions Lille 2018

The Quantum Theory of Optical Coherence*

ROY J. GLAUBER Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts (Received 11 February 1963)

> Phys. Rev. **130**, 2529 (1963) Phys. Rev. Lett. 10, 84 (1963) Phys. Rev. 131, 2766 (1963)

R.J. Glauber

1956: stellar interferometry...

Nature **178**, 1046 (1956)

1977: non classical light resonance light from a single atom

Phys. Rev. Lett. **39**, 691 (1977)

Photon quantum optics

Classical beams of light

Classical waves

DPP-fermions Lille 2018

Classical field amplitude $\vec{\mathcal{E}}(\mathbf{r},t)$

• Maxwell's equations determine the fields from the currents • Laplace's force determines charge evolution from fields

Classical fluctuations of the field

$$\mathbb{E}\left(\overrightarrow{\mathcal{E}}(\mathbf{r},t)\overrightarrow{\mathcal{E}}(\mathbf{r}',t')\right)$$

• Theory of optical coherence: determines contrast in interferometers

• Optical coherence interferometry: reconstructing images by exploiting interferometry with low coherence light.

Photon quantum optics

Quantum electrodynamics

- Electromagnetic fields becomes quantum
- Built-in light matter coupling

What are photons ?

- Excitations on top of the vacuum
- Carry energy and momentum (particle attributes)

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}^{(+)}(\mathbf{r},t) + \mathbf{E}^{(-)}(\mathbf{r},t)$$

photon destruction (positive frequencies)

photon creation (negative frequencies)

DPP-fermions Lille 2018

Fixed frequency modes

Photon quantum optics

Experimentally accessed quantities

Field amplitudes

$$\overrightarrow{\mathcal{E}}(\mathbf{r},t) = \langle \mathbf{E}(\mathbf{r},t) \rangle_{\rho}$$

Quantum fluctuations

$$X_{\theta} = \frac{1}{\sqrt{2}} \left(e^{i\theta} a + e^{-i\theta} a^{\dagger} \right)$$

$$\langle (\Delta X_{\theta})^{2} \rangle_{\rho} = \frac{1}{2} \langle a a^{\dagger} + a^{\dagger} a \rangle_{\rho} - |\langle a \rangle_{\rho}|^{2} + \Re \left(e^{2i\theta} (\langle a^{2} \rangle_{\rho} - \langle a \rangle_{\rho}^{2}) \right)$$

$$G^{(1)}(\mathbf{r}, t | \mathbf{r}', t') = \operatorname{Tr}\left(\mathbf{E}^{(+)}(\mathbf{r}, t) \rho \mathbf{E}^{(-)}(\mathbf{r}', t')\right)$$

First order coherence

DPP-fermions Lille 2018

$$\operatorname{Tr}\left(\mathbf{E}^{(+)}(\mathbf{r}',\mathbf{t}')\mathbf{E}^{(+)}(\mathbf{r},\mathbf{t})\,\rho\right)$$

Pair amplitude

Quantum beams of light

Up to second moments

Zero average field Time dependent fluctuations

Non zero average field Time dependent fluctuations

DPP-fermions Lille 2018

Pros and cons

- Only requires up to noise measurements (electronics)
- OK for Gaussian fluctuations but not generically enough
- Non classical states: squeezing

Applications

- Quantum sensing for interferometers (LIGO)
- Enhanced precision quantum imaging Phys. Rev. Lett. 88, 203601 (2002)
- Multimode entanglement: quantum communication, quantum imaging (Photonics **76**, 32-35, (2015))

Quantum beams of light

Full tomography

DPP-fermions Lille 2018

Pros and cons

- Requires the full access to statistics & Max Like, Max • Ent methods...
- Visualization using the Wigner distribution function in • Fresnel plane
- Not yet fully multimode!

Applications

- Decoherence studies (Nature. 455, 510 (2008)) ۲
- CV computation using Gottesman, Kitaev & Preskill logical qubit (Phys. Rev. A 64, 012310 (2001))
- "Cat code" encoding of qubits in non classical superpositions (Nature **536**, 441 (2016)).

What are the "(quantum) signals" carried by electromagnetic radiation?

- $\overrightarrow{\mathcal{E}}(\mathbf{r},t) = \langle \mathbf{E}(\mathbf{r},t) \rangle_{\rho}$ Classical signal
- $G^{(1)}(\mathbf{r},t|\mathbf{r}^{\prime},t^{\prime})$

Quantum signals

DPP-fermions Lille 2018

Statistical properties: classical coherence theory

$$f) = \operatorname{Tr}\left(\mathbf{E}^{(+)}(\mathbf{r},t)\,\rho\,\mathbf{E}^{(-)}(\mathbf{r}',t')\right)$$

 $\operatorname{Tr}\left(\mathbf{E}^{(+)}(\mathbf{r}',\mathbf{t}')\mathbf{E}^{(+)}(\mathbf{r},\mathbf{t})\,\rho\right)$

Quantum fluctuations: higher order coherence, photon statistics...

- Controlled generation of coherent excitations •
- Measurement of their quantum coherence ullet
- Quantum state reconstruction (*i.e.* quantum tomography) ullet

How can you achieve this for electrical currents?

DPP-fermions Lille 2018

Quantum optics : the art of controlling and processing quantum light signals

- Introduction
- Lessons from quantum optics
- Electron quantum optics •
- Conclusion & perspectives

• Signal processing for quantum electrical currents

Electron quantum optics

Guided propagation along 1D chiral edge channels

Measurement of output current correlations

DPP-fermions Lille 2018

Quantum point contact used as electronic beam-splitter

Electron quantum optics

Quantum Hall edge channels as electronic optical fibers

2DEG

III-V semi-conductor heterojunction GaAs/GaAlAs

Quantum Hall effect & edge channels

DPP-fermions Lille 2018

$$n \simeq 10^{11} \text{ cm}^{-2}$$

 $\mu \simeq 10^6 \text{ cm}^2/\text{VS}$

Insulating 2D bulk

Current transported along edge channels: no backscattering!

Chiral relativistic fermions

$$v_F \simeq 10^5 - 10^6 \,\mathrm{m\,s}^{-1}$$

M. Büttiker, Phys. Rev. B. 88, 9375 (1988)

New generators: single electron sources

Coherent nano-electronics: many electrons sources

Electron quantum optics: single or few electrons sources

Electron quantum optics

The basic questions of electron quantum optics

DPP-fermions Lille 2018

no classical wave limit

decoherence

few quantas / many modes

Shape of emitted wave-packets?

Quantum electronic sources and circuits emits quantum signals

B. Roussel, PhD thesis (tel-01730943, defended on Dec. 15th, 2017)

DPP-fermions Lille 2018

Electron pair amplitude $\langle \psi(1)\psi(2)\rangle_{\rho}$ $\langle \psi(1)\psi(2)\rangle_{\rho} = 0$ Normal metal $\langle \psi(1)\psi(2)\rangle_{\rho} \neq 0$ Superconductivity

Quantum electronic sources and circuits emits quantum signals

Review papers: E. Bocquillon *et al*, Ann. Phys. (Berlin) **526**, 1-30 (2014) A. Marguerite *et al*, Physica Status Solidi B **254**, 1600618 (2017)

Single electron coherence:

Electronic analogue of Glauber's correlator

Example: many body state $\prod \psi^{\dagger}[\varphi_k]$ k=1 $\mathcal{G}^{(e)}(t|t') =$

Ideal single electron source: $\psi^{\dagger}[\varphi_e]|F$ Single electron coherence: $\mathcal{G}^{(e)}(t,t') = \mathcal{G}_F^{(e)}(t,t') + \varphi_e(-v_F t)\varphi_e(-v_F t')^*$ Fermi sea contribution

In general:

$$\mathcal{G}^{(e)}(t,t') = \mathcal{G}_F^{(e)}(t,t') + \Delta \mathcal{G}^{(e)}(t,t')$$

Fermi sea contribution

rs
$$\mathcal{G}_{\rho}^{(1)}(x,t|x',t') = \operatorname{Tr}(E^+(x,t)\,\rho\,E^-(x',t'))$$

$$|\emptyset\rangle \quad \text{with} \quad \langle \varphi_k | \varphi_l \rangle = \delta_{k,k}$$

$$= \sum_{k=1}^{N} \varphi_k (-v_F t) \varphi_k (-v_F t')^*$$

$$P_k^{(e)}(t,t') + \langle \varphi_k (-v_F t) \varphi_k (-v_F t')^*$$

Wavepacket contribution

Excess single electron coherence

DPP-fermions Lille 2018

$$) = \frac{\mathcal{N}_e \Theta(\omega)}{\omega - \omega_e - i/2\tau_e}$$

Time domain c) $\left| \Delta \mathcal{G}^{(e)} \left(\overline{t} + \frac{\tau}{2}, \overline{t} - \frac{\tau}{2} \right) \right|$ $0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1$

D. Ferraro *et al*, Phys. Rev. B **88**, 205303 (2013)

Definition :

$$W_{\rho,x}^{(e)}(t,\omega) = v_F \int_{\mathbb{R}} e^{i\omega\tau} \mathcal{G}_{\rho,x}^{(e)} \left(t + \frac{\tau}{2} \left|t - \frac{\tau}{2}\right) d\tau$$

Marginals :

$$\langle i(x,t) \rangle_{\rho} = -e \int_{\mathbb{R}} \Delta W^{(e)}_{\rho,x}(t,\omega) \, \frac{\mathrm{d}\omega}{2\pi}$$

$$f_e(\omega|\rho, x) = W_{\rho, x}^{(e)}$$

DPP-fermions Lille 2018

$$\overline{(t,\omega)}^t$$

Electronic coherence

Sinusoidal current

Single electron coherence:
$$\mathcal{G}^{(e)}(t,t') = \mathcal{G}^{(e)}_{\mu,T_{\mathrm{el}}}(t,t') \exp\left(\frac{ie}{\hbar} \int_{t}^{t'} V(\tau) d\tau\right)$$

AC current: sinusoidal $V(t) = V \cos(2\pi)$

Parameters $k_B T_e/hf$ # of thermal photons at hf

eV/hf

$$W^{(e)}(\omega,t) = \sum_{n=-\infty}^{+\infty} \frac{J_n(\frac{2eV}{hf}\cos\left(2\pi ft\right))}{e^{\beta_{\rm el}(\hbar\omega+nhf)}+1}$$

DPP-fermions Lille 2018

of photons at *hf* or emitted charge per period (in units of *e*)

Sinusoidal current

Large amplitude and high temperature

DPP-fermions Lille 2018

Large amplitude and zero temperature

 $eV \gg hf$ $T_{\rm el} = 0 \ {\rm K}$

Quantum ripples:

$$\int_{t-\tau/2}^{t+\tau/2} V(\tau') \, d\tau' = \tau V(t) + \frac{V''(t)}{24} \tau^3 + \dots$$

Electronic coherence

Quantum RC circuit

DPP-fermions Lille 2018

J. Gabelli et al, Science **313**, 499 (2006)

G. Fève et al, Science **316**, 1169 (2007)

Electronic coherence

Independent particle computation (Floquet scattering theory)

D = 1

 $D \sim 0.4$

Energy resolved *e* and *h* excitations

DPP-fermions Lille 2018

HOM interferometry

E. Bocquillon *et al*, Science **339**, 1054 (2013)

Quantum tomography: C. Grenier *et al*, New Journal of Physics **13**, 093007 (2011) T. Jullien *et al*, Nature **514**, 603-607 (2014)

Decoherence studies:

A. Marguerite et al, Phys. Rev. B 94, 115311 (2016)

Mach Zehnder interferometry

$$\Delta W_{1,\text{out}}(t,\omega) = \mathcal{M}_{1,1} \Delta W_S^{(e)}(t-\tau_1,\omega) + \mathcal{M}_{2,2} \Delta W_S^{(e)}(t-\tau_2,\omega) \qquad \text{Classical contributions} \\ +2|\mathcal{M}_{1,2}| \cos(\omega(\tau_1-\tau_2)+\phi) \Delta W_S^{(e)}\left(t-\frac{8\tau_1+\tau_2}{2},\omega\right) \qquad \text{Quantum contributions}$$

D. Ferraro et al, Phys. Rev. B 88, 205303 (2013) Time domain: G. Haack, M. Moskalets et M. Büttiker, Phys. Rev. B 84, 081303 (2011)

 \bigcirc

Courtesy P. Roche

Single electron tomography

Nature 178, 1046 (1956)

DPP-fermions Lille 2018

Two particle interference interpretation U. Fano, Am. J. Phys. 29, 539 (1961)

Undistinguishable **bosons** 3

Fermions

Bunching

Anti-bunching

The electronic Hong Ou Mandel experiment

Single electron emitter #1

Single electron emitter #2

DPP-fermions Lille 2018

E. Bocquillon et al, Science **339**, 1054 (2013)

The noise is the signal

DPP-fermions Lille 2018

Current noise measurements

$$S_{11}^{(S_1,S_2)} = S_{11}^{(S_1)} + S_{11}^{(S_2)} + \Delta S_{11}^{(\text{HOM})}$$
$$\Delta S_{11}^{(\text{HOM})} = -e^2 \int \overline{(\Delta W_{S_1}^{(e)} \Delta W_{S_2}^{(e)})(t,\omega)}^t \frac{d}{2}$$

«The noise is the signal » (R. Landauer 1998)

C. Grenier *et al*, New Journal of Physics **13**, 093007 (2011) D. Ferraro *et al*, Phys. Rev. B **88**, 205303 (2013)

 $d\omega$ 2π

Excess Wigner function of a small ac drive $V_{ac}(t) = V \cos(2\pi f t)$

Variant implémentation: T. Jullien et al, Nature 514, 603-607 (2014)

DPP-fermions Lille 2018

2*e*-coherence: $\mathcal{G}_{\rho}^{(2e)}(1,2|1',2') = \operatorname{Tr}\left(\psi(2)\psi(1)\rho\,\psi^{\dagger}(1')\psi^{\dagger}(2')\right)$

- Encodes two-electron wave-functions
- Symmetries in 4D space: quantum statistics

Question:

Intrinsic contribution of the source to two-electron coherence? •

APS March Meeting 2017

M. Moskalets, Phys. Rev. B. 89, 045402 (2012)

$$\begin{split} &\prod_{k=1}^{N} \psi^{\dagger}[\varphi_{k}] |\emptyset\rangle \text{ with } \langle \varphi_{k} |\varphi_{l} \rangle = \delta_{k,l} \\ &\mathcal{G}^{(2e)}(1,2|1',2') = \sum_{\{k,l\}} \varphi_{k,l}(1,2) \varphi_{k,l}^{*}(1',2) \\ &\text{ where } \varphi_{k,l}(x,y) = \varphi_{k}(x)\varphi_{l}(y) - \varphi_{k}(y)\varphi_{l}(x) \end{split}$$

2^{\prime}

Intrinsic two electron coherence

$\mathcal{G}_{\rho}^{(2e)}(1,2|1',2') = \mathcal{G}_{F}^{(2e)}(1,2|1'2')$

APS March Meeting 2017

E. Thibierge *et al*, Phys. Rev. B. **93**, 081302(R) (2016)

Two electron coherence

Current noise measurement

Direct noise measurement:

$$S \xrightarrow{i(t)} S_{i}(t, t') = \langle i(t) i(t') \rangle - \langle i(t) \rangle$$
$$\Delta S_{i}(t, t') = S_{i}(t, t')_{on} - S_{i}(t)$$
Noise spectrum:
$$\Delta \overline{S}(\omega) = \int \overline{\Delta S_{i}(t + \tau/2, t - \tau/2)}$$

Current noise from electronic coherences

$$\Delta S_{i}(t,t') = -e\langle i(t)\rangle_{S}\delta(t-t') + (ev_{F})^{2} \left(\Delta \mathcal{G}_{S}^{(2e)}(t,t'|t,t') - \Delta \mathcal{G}_{S}^{(e)}(t|t)\Delta \mathcal{G}_{S}^{(e)}(t'|t') \right) - (ev_{F})^{2} \left(\mathcal{G}_{F}^{(e)}(t|t')\Delta \mathcal{G}_{S}^{(e)}(t|t') + \mathcal{G}_{F}^{(e)}(t'|t)\Delta \mathcal{G}_{S}^{(e)}(t'|t) \right)$$

APS March Meeting 2017

A. Mahé et al, Phys. Rev. B 82, 201309 (2010) F. Parmentier et al, Phys. Rev. B 85, 165438 (2012)

Noise spectrum of the mesoscopic capacitor

B. Roussel *et al*, Physica Status Solidi B **254**, 1600621 (2017)

Two electron coherence and current noise

Accessing two electron coherence

A-detector Signal: outgoing currents

Two particle interferences at the beam splitter: \angle

Current correlations after the detectors:

It combines:

- HBT interferometry: partitioning of two-electron coherence at a beam splitter

B-detector Signal: outgoing currents

$$\Delta \mathcal{G}_{\text{out}_{BS_0}}^{(2e)}(1\,t_1; 2\,t_2|1\,t_1'; 2\,t_2') = RT\,\Delta \mathcal{G}_S^{(2e)}(t_1, t_2|t_1', t_2')$$
$$\langle i_A\,i_B \rangle = \left(\mathcal{L}_A^{(1)} \otimes \mathcal{L}_B^{(2)}\right) \left[\Delta \mathcal{G}_{\text{out}_{BS_0}}^{(2e)}(1\,t_1; 2\,t_2|1\,t_1'; 2\,t_2')\right]$$

• Single particle interferometry: converting off-diagonal single-electron coherence into measurable signal

Example: Franson interferometry

A-detector

Signal: outgoing currents Parameters: time of flights, **AB flux**

The Franson signal: current correlations between left/right detectors with both flux sensitivities

B-detector

Signal: outgoing currents Parameters: time of flights, **AB flux**

$$\sim (ev_F)^2 e^{-i(\Phi_L + \Phi_R)} \Delta \mathcal{G}_S^{(2e)}(t_L, t_R | t_L - \delta t_L, t_R - \delta t_R)$$

The original Franson interferometer

Franson signals

0.610

0.150

-0.309

-0.768

-1.228

30

60

An electron pair

Two Levitons separated by 10x their width τ_0

A time-bin entangled electron pair

Quantum superposition of two pairs separated by 30x their width

E. Thibierge *et al*, Phys. Rev. B. **93**, 081302(R) (2016)

Franson interferometry current noise signals

What are the "(quantum) signals" carried by electrical currents (*in a metal*)?

Classical signal

Quantum signals

NONE !

DPP-fermions Lille 2018

- $\mathcal{G}_{\rho}^{(e)}(x,t|x',t') = \operatorname{Tr}(\psi(x,t)\,\rho\,\psi^{\dagger}(x',t'))$
- $\mathcal{G}_{\rho}^{(2e)}(1,2|1',2') = \operatorname{Tr}\left(\psi(2)\psi(1)\rho\,\psi^{\dagger}(1')\psi^{\dagger}(2')\right)$
- Higher order coherence: information on the full charge statistics...
- Problem: really hard to access experimentally...

Take home message #3

Mach-Zehnder interferometry

Hong Ou Mandel interferometry

Franson interferometry

Perspectives

From electronic coherences to quantum information quantities: quantitative criteria for 2e entanglement?

DPP-fermions Lille 2018

E. Thibierge *et al*, Phys. Rev. B **93**, 081302 (2016) B. Roussel *et al*, Physica Status Solidi B **254**, 1600621 (2017)

- Introduction
- Lessons from quantum optics
- Electron quantum optics
- •
- Conclusion & perspectives

Signal processing for quantum electrical currents

Autopsy of a quantum electrical current ?

DPP-fermions Lille 2018

What are the single electron wave functions contained in this electrical current?

B. Roussel, PhD thesis (tel-01730943)

A not so trivial problem...

DPP-fermions Lille 2018

B. Roussel, PhD thesis (tel-01730943)

Full coherence (theory/experiment)

DPP-fermions Lille 2018

Electronic part of the coherence

Spectrum and eigenmodes

Electron quantum optics	
T	period
u	quasi-pulsation
$ \psi_{\sf n}(u) angle$	eigenmodes
$p_n(\nu)$	probability spectrum

Basis analoguous to Wannier functions: For each band of the spectrum, time-translated Wannier functions • Coherences from one period to the other in the same band $(\alpha_n(I))$

DPP-fermions Lille 2018

D = 0.8

Source

Wannier

Floquet Bloch spectrum = Entanglement spectrum

Floquet scattering

$$\psi_{\text{out}}(t) = \int S(t, t')\psi_{\text{in}}(t') dt'$$

Electron/hole entanglement

$$|\Psi\rangle = (u + v \psi^{\dagger}[\varphi_e]\psi[\varphi_h])|F_{\mu}\rangle$$

u and $v \neq 0$

Result: information theoretical measure of e/h entanglement at T=0 K

electronics

Digital processing

"Quantum signal" processing

Classical regime : 10 MHz / 100 mK

DPP-fermions Lille 2018

A. Marguerite *et al*, arXiv:1710.11181

Quantum regime: 9 Ghz / 100 mK

DPP-fermions Lille 2018

A. Marguerite *et al*, arXiv:1710.11181

Quantum regime: 9 Ghz / 60 mK

DPP-fermions Lille 2018

A. Marguerite *et al*, arXiv:1710.11181

Dominant electron and hole wave functions

A. Marguerite *et al*, arXiv:1710.11181

Electron and hole coherences (sine, 9 GHz, 60 mK)

period index *l*

A. Marguerite *et al*, arXiv:1710.11181

What have we done?

Noise data Wigner function

Tomography from HOM interferometry (aka « quantum signal processing >>)

Individual wave functions

« Quantum signal » processing

A 40 ps single electron Leviton @50 mK, repeated at 4 GHz

A. Marguerite *et al*, arXiv:1710.11181

A 40 ps single electron Leviton @50 mK, repeated at 4 GHz

Not really single electronic !!!

A. Marguerite et al, arXiv:1710.11181

A proof of concept of the quantum current analyzer has been demonstrated !

Single electron coherence

- Single electron coherence can be decomposed into elementary electronic atoms of signal

« Quantum music »

Time

Theory vs experiment: perspective

DPP-fermions Lille 2018

- Introduction
- Lessons from quantum optics
- Electron quantum optics
- Conclusion & perspectives •

• Signal processing for quantum electrical currents

Analyzing electronic quantum signals: perspetives

Interferometric measurements (MZI & HOM) Signal processing of electronic coherence Single particle physics & electronic decoherence Decoherence control

Interferometric measurements (Franson & Samuelsson-Büttiker?) Two particle physics: entanglement, interaction induced quantum correlations *etc*

Potential applications : quantum sensing of electric and magnetic fields at the submicron scale.

DPP-fermions Lille 2018

C. Cabart (PhD thesis)

2*e*-coherence: $\mathcal{G}_{\rho}^{(2e)}(1,2|1',2') = \operatorname{Tr}\left(\psi(2)\psi(1)\rho\,\psi^{\dagger}(1')\psi^{\dagger}(2')\right)$

- Encodes two-electron wave-functions
- Symmetries in 4D space: quantum statistics

Questions:

- ●

DPP-fermions Lille 2018

M. Moskalets, Phys. Rev. B. 89, 045402 (2012)

$$\begin{split} &\prod_{k=1}^{N} \psi^{\dagger}[\varphi_{k}] |\emptyset\rangle \text{ with } \langle \varphi_{k} |\varphi_{l} \rangle = \delta_{k,l} \\ &\mathcal{G}^{(2e)}(1,2|1',2') = \sum_{\{k,l\}} \varphi_{k,l}(1,2) \varphi_{k,l}^{*}(1',2) \\ &\text{ where } \varphi_{k,l}(x,y) = \varphi_{k}(x)\varphi_{l}(y) - \varphi_{k}(y)\varphi_{l}(x) \end{split}$$

Intrinsic contribution of the source to two-electron coherence? • How to access the intrinsic two-electron coherence emitted by a source?

2^{\prime}

Intrinsic two electron coherence

$\mathcal{G}_{\rho}^{(2e)}(1,2|1',2') = \mathcal{G}_{F}^{(2e)}(1,2|1'2')$

DPP-fermions Lille 2018

E. Thibierge *et al*, Phys. Rev. B. **93**, 081302(R) (2016)

Two electron coherence

Current noise measurement

Direct noise measurement:

$$S \xrightarrow{i(t)} S_{i}(t, t') = \langle i(t) i(t') \rangle - \langle i(t) \rangle$$
$$\Delta S_{i}(t, t') = S_{i}(t, t')_{\text{on}} - S_{i}(t, t')_{\text{on}}$$

Current noise from electronic coherences

$$\Delta S_{i}(t,t') = -e\langle i(t)\rangle_{S}\delta(t-t') + (ev_{F})^{2} \left(\Delta \mathcal{G}_{S}^{(2e)}(t,t'|t,t') - \Delta \mathcal{G}_{S}^{(e)}(t|t)\Delta \mathcal{G}_{S}^{(e)}(t'|t') \right) - (ev_{F})^{2} \left(\mathcal{G}_{F}^{(e)}(t|t')\Delta \mathcal{G}_{S}^{(e)}(t|t') + \mathcal{G}_{F}^{(e)}(t'|t)\Delta \mathcal{G}_{S}^{(e)}(t'|t) \right)$$

A. Mahé et al, Phys. Rev. B 82, 201309 (2010) F. Parmentier et al, Phys. Rev. B 85, 165438 (2012)

Noise spectrum of the mesoscopic capacitor

B. Roussel *et al*, Physica Status Solidi B **254**, 1600621 (2017)

Two electron coherence and current noise

Accessing two electron coherence

A-detector Signal: outgoing currents

Two particle interferences at the beam splitter: \angle

Current correlations after the detectors:

It combines:

- HBT interferometry: partitioning of two-electron coherence at a beam splitter

B-detector Signal: outgoing currents

$$\Delta \mathcal{G}_{\text{out}_{BS_0}}^{(2e)}(1\,t_1; 2\,t_2|1\,t_1'; 2\,t_2') = RT\,\Delta \mathcal{G}_S^{(2e)}(t_1, t_2|t_1', t_2')$$
$$\langle i_A\,i_B \rangle = \left(\mathcal{L}_A^{(1)} \otimes \mathcal{L}_B^{(2)}\right) \left[\Delta \mathcal{G}_{\text{out}_{BS_0}}^{(2e)}(1\,t_1; 2\,t_2|1\,t_1'; 2\,t_2')\right]$$

• Single particle interferometry: converting off-diagonal single-electron coherence into measurable signal

Example: Franson interferometry

A-detector

Signal: outgoing currents Parameters: time of flights, **AB flux**

The Franson signal: current correlations between left/right detectors with both flux sensitivities

DPP-fermions Lille 2018

B-detector

Signal: outgoing currents Parameters: time of flights, **AB flux**

$$\sim (ev_F)^2 e^{-i(\Phi_L + \Phi_R)} \Delta \mathcal{G}_S^{(2e)}(t_L, t_R | t_L - \delta t_L, t_R - \delta t_R)$$

The original Franson interferometer

Franson signals

0.610

0.150

-0.309

-0.768

-1.228

60

An electron pair

Two Levitons separated by 10x their width τ_0

A time-bin entangled electron pair

Quantum superposition of two pairs separated by 30x their width

E. Thibierge *et al*, Phys. Rev. B. **93**, 081302(R) (2016)

Franson interferometry current noise signals

Completion of the take home message #2

Electron quantum optics as quantum signal processing

Mach-Zehnder interferometry

Hong Ou Mandel interferometry

Franson interferometry

Perspectives

From electronic coherences to quantum information quantities: quantitative criteria for 2e entanglement?

Coulomb interaction effects on two-electron coherence

linear filtering

E. Thibierge *et al*, Phys. Rev. B **93**, 081302 (2016) B. Roussel et al, Physica Status Solidi B 254, 1600621 (2017)

