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Quantum statistics (in 3D)

Cold bosons Cold fermions

force carriers (fluffy) matter (stable)
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Quantum statistics: Why fermions?

A quantum wave function Ψ: (R3)N → C subject to symmetry

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = ±Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

Observable: |Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN )|2 prob. distribution

Generally a result of:

States of being + Identity

#pluralism + #oneness ⇒ #diversity

(not the only result)

Let us take the perspective of a particle...
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Quantum statistics: configurations

Different states of being – configurations – potentiality

Configuration space C1 for a single particle

Ex1: C1 = {−1, 1}
Ex2: C1 = Rd

Connectivity important!
“How may I shift from one state of being to another?”

What is a particle?

• A representation/manifestation of some symmetry?
• A probability distribution on C1?
• An observable state subject to certain operations (operators)?
• A player on a game board defined by C1? (some dynamics)

L2(C1), X̂ =

[
−1 0

0 1

]
, Ĥ =

[
0 1

1 0

]
, U(t) = eitĤ
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Quantum statistics: identity / parallellism

Identity crisis (or just loneliness?) — “What if I were many?”

C×N1 C×N1 / ∼ (C×N1 \ coinc.)/ ∼

distinguishable vs identical vs identical but distinct

“Quantum logic”: if there is no way (no observable) to distinguish
states/configurations – then they must be identified!

⇒ Configuration space for N identical particles:

CN := (C×N1 \ coinc.)/ ∼ ∼=
{
N -point subsets of C1

}
[Gibbs 1870’s; Leinaas, Myrheim, 1977]
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Quantum statistics: two identical particles in Rd

C2 = Rd × Rd/∼ ∼= Rd × R+ × Sd−1/∼
Identification (x1,x2) ∼ (x2,x1)
Center-of-mass coordinate X := 1

2(x1 + x2)
Relative coordinate r := x1 − x2 = rn, |n| = 1, n ∼ −n

Connectivity: Inherited from a choice of dynamics, say

H2 =
1

2m

(
p2

1 +p2
2

)
=

1

4m
p2
X +

1

m
p2
r =

1

4m
p2
X +

1

m

(
p2
r +

1

r2
p2
n

)
Consider group of continuous loops in C2 (modulo simple loops)

[0, 1] 3 t 7→ n(t) ∈ Sd−1, n(1) = ±n(0)

π1(C2) ∼= π1(Sd−1/ ∼) ∼=


1, d = 1,

Z, d = 2,

Z2, d ≥ 3.
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Quantum statistics: N identical particles in Rd

Configuration space CN =
{
N -point subsets of Rd

}
.

Typical dynamics

HN =

N∑
j=1

( 1

2m
p2
j + V (xj)

)
+
∑
j<k

W (xj − xk)

Exchanges of particles are continuous loops in CN :

{loops in CN up to homotopy} = π1(CN ) =


1, d = 1,

BN , d = 2,

SN , d ≥ 3.
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Quantum statistics: braid group

BN is the braid group on N strands:

BN =
〈
σ1, . . . , σN−1 : σjσj+1σj = σj+1σjσj+1, σjσk = σkσj

〉
|j−k|>1

σj :
1 2 . . . j . . . N

σ−1
j :

1 2 . . . j . . . N

Ex in B4:

= =

σ1σ2σ1 = σ2σ1σ2 σ1σ3 = σ3σ1

If we add the relations σ2
j = 1 we obtain the permutation group SN
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Quantum statistics: exchange statistics

We may insist that a local definition of dynamics

Ω ⊆ CN top. trivial⇒ distinguishable⇒

ĤN acting in some local Hilbert space L2(Ω; h)

extends to a global definition on CN (a vector bundle with fiber h).

Additional information required upon gluing such local information:
a representation of exchanges as operators

ρ : π1(CN )→ U(h).

Simplest case h = C: ρ(σj) = eiθj ∈ U(1),

eiθjeiθj+1eiθj = eiθj+1eiθjeiθj+1

Exchange phase: θj = 0⇒ ρ = 1⇒ bosons,
θj = π ⇒ ρ = sign⇒ fermions, otherwise “anyons” (only in 2D)
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Quantum statistics: exclusion statistics

For bosons and fermions we can again extend to C×N ∼ SN ×CN :

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = ±Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

N⊗
sym

L2(C1) vs
N∧
L2(C1)

Slater determinant:

(ψ1 ∧ . . . ∧ ψN )(x1, . . . ,xN ) =
1√
N !

det
[
ψj(xk)

]
j,k

Pauli’s exclusion principle: ψ ∧ ψ = 0

Bose-Einstein statistics vs Fermi-Dirac statistics

(In 1D one has to care about boundary conditions at r = 0: ∂rΨ = ηΨ)
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Quantum statistics: Spin-Statistics theorem

internal state h ∼= CD

relativistic considerations ⇒

{
D odd for bosons

D even for fermions

Here spinless particles (D = 1 and nonrel.)

[Doplicher, Haag, Roberts, 1971; Buchholz, Fredenhagen, 1982; Fröhlich,

Gabbiani, Marchetti, 1989; Mund, 2009]
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Commutators

Given an ON basis of L2(C1),

{ψn}n=0,1,2,...,

we may define corresponding annihilation / creation operators
on the Bose/Fermi part of the Fock space

⊕∞
N=0⊗NL2(C1):

an : ⊗NsymL
2(C1)→ ⊗N−1

sym L2(C1), a∗n : ⊗NsymL
2(C1)→ ⊗N+1

sym L2(C1),

anam − aman = 0, ana
∗
m − a∗man = δnm, a∗na

∗
m − a∗ma∗n = 0,

respectively

cn : ∧N L2(C1)→ ∧N−1L2(C1), c∗n : ∧N L2(C1)→ ∧N+1L2(C1),

cncm + cmcn = 0, cnc
∗
m + c∗mcn = δnm, c∗nc

∗
m − c∗mc∗n = 0.

Note (c∗n)2 = 0 (Pauli again).
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BEC vs Fermi sea

The non-interacting gas of N particles in a box C1 = Ω:

ĤN =

N∑
j=1

Ĥ1(xj) =
~2

2m

N∑
j=1

(−∇2
xj

)Ω,

with eigenstates

Ψ(nj) = ψn1 ⊗ . . .⊗ ψnN , Ĥ1ψn = enψn,

N∑
j=1

enj .

At zero temp. bosons form a Bose-Einstein Condensate (BEC)

Ψ(0,...,0)(x1, . . . ,xN ) = ψ0(x1) . . . ψ0(xN ), Ne0,

while fermions fill a Fermi sea (lowest energy levels)

Ψ(0,1,...,N−1) = ψ0 ∧ ψ1 ∧ . . . ∧ ψN−1,

Weyl’s law:
∑N−1

n=0 en ∼ Cd|Ω|−2/dN1+2/d as N →∞.
The art of being a fermion D. Lundholm 14/20



BEC vs Fermi sea

Cold bosons Cold fermions
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Density Functional Theories

One-body density %Ψ ∈ L1(Rd;R+),
∫
Rd %Ψ = N (Ψ normalized),

%Ψ(x) :=

N∑
j=1

∫
Rd(N−1)

|Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )|2
∏
i 6=j

dxi

Trivially, for a one-body potential V : Rd → R,

〈Ψ,
∑N

j=1V (xj)Ψ〉 =

∫
Rd

V %Ψ.

Local Density Approximation (use Weyl in boxes locally):

〈Ψ, ĤNΨ〉 ≈
∫
Rd

(
Cd%

1+2/d
Ψ + V %Ψ

)
for minimizers.

The r.h.s. is known as the Thomas-Fermi (TF) functional.
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Important example: 2D external magnetic field

2D and constant magnetic field B > 0:

C1 = R2 ∼= C, z =

√
B

2~
(x+ iy)

H1 =
1

2m

(
(px +By/2)2 + (py −Bx/2)2

)
L1 = xpy − ypx = z∂z − z̄∂z̄

Landau level n ∈ {0, 1, 2, . . .}, ang. mom. l ∈ {−n,−n+ 1, . . .}

Ĥ1ψn,l =
~B
m

(
n+

1

2

)
ψn,l L̂1ψn,l = ~lψn,l

ψ0,l(z) =
1√
πl!

zle−|z|
2/2

N -body states

Ψ(x1, . . . ,xN ) = f(z1, . . . , zN ; z̄1, . . . , z̄N )e−
∑

j |zj |2/2
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FQHE / Laughlin states

(Fractional) quantum Hall effect of N electrons:

HN =
1

2m

N∑
j=1

(
(px −By/2)2 + (py +Bx/2)2

)
j

+
∑
j<k

|xj − xk|−1

Laughlin’s variational ansatz: Ψ ∼
∏
j<k g(zj − zk) (Jastrow)

1 lowest Landau level ⇒ Ψ ∼ f(z1, . . . , zN )e−|z|
2/2

2 fermionic ⇒ f antisymm. ⇒ g odd
3 eigenstate of ang. mom. ⇒ f homogeneous pol., g(z) ∼ z`
⇒

ΨLau(z) =
∏
j<k

(zj − zk)`e−|z|
2/2, ` ≥ 1 odd.

Coulomb gas (plasma) connection

|ΨLau(z)|2 = exp
(

2`
∑
j<k

ln |zj − zk| −
∑
j

|zj |2
)
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2D clustering states

Laughlin quasiholes

Ψqh(z;w1, w2) =

N∏
j=1

(w1 − zj)γ1(w2 − zj)γ2ΨLau(z)

Pfaffian / Moore-Read states [Cappelli, Georgiev, Todorov]

Ψ(z) = S

 ∏
1≤j<k≤N/2

(z1,j − z1,k)
2

∏
1≤j<k≤N/2

(z2,j − z2,k)
2

 e−|z|2/2
Read-Rezayi states

fN=νK(z) :=
1

(ν!)K−1
S

 ν∏
q=1

∏
1≤j<k≤K

(zq,j − zq,k)µ
 , µ even

Clustering property

fN (z1, . . . , zN−ν , z, . . . , z) =

N−ν∏
j=1

(z − zj)µfN−ν(z)

Connections to CFT, Jack polynomials, ... [Bernevig, Haldane]
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