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1.	The	context of	research in	physics around my thesis





1954	sq Studies of	André	Blanc-Lapierre	about	random fonctions

entre	photons:	controverse	entre	physiciens
1960	Découverte	du	laser

Notice	de	Bernard	Picinbono



André	Blanc-Lapierre
a	renown physicist and	academician

- he left his mark	by	introducing in	France	the	then emerging information	
theory,	
- he extended it to	optics,	
- well ahead of	his time,	he seeked to	immerse Statistical Mechanics in	a	
rigorous probabilistic framework:
◦ Early in	1954	he first	explained properly the	phenomenom of	optical
coherence (interference fringes)	with the	theory of	random functions and	
the	notion	of	correlation.	His papers,	solely in	French,	were ignored
(knowingly?)	

◦ 10	years later, with the	discovery and	development of	lasers,	this viewpoint
became universal.	And	it was extended by	Roy	Glauber	in	Quantum	
Mechanics.



1954	ABL	explains optical coherence,	alias	correlation between light	beam fluctuations



Applying to	optics his new	theory of	random functions
Mathematical foundations:
◦ ‘Theory	of	random functions’	A.	Blanc-Lapierre,	R.	Fortet,	Ed.	Masson,	Vol.	1	1965,	Vol.	2	1968

Optics:	
◦ A	light	source	creates an	electromagnetic field 𝑥 𝑀, 𝑡 	in	space𝑀 at	time	𝑡	:	it is a	random function
◦ For	incoherent light	the	field is a	Gaussian random function

Coherence – Correlation:
◦ Two stationary light	sources:	in	an	observation	point	𝑀	two	superimposed	fields	𝑥1 𝑡 	and	𝑥2 𝑡 .
To	create interferences (fringes),	put	a	delay 𝜏 on	second	source	path

◦ Average light	intensity



TwissAt	the	same time,	
the	first	optical
coherence
(interference)	
experience at	the	
quantum	level:	the	
photodetection
times	for	the	two
light	beams
appear correlated:
a	bunching effect

1956



“In	this	optical	system,	what	is	fundamental	is	that	the	time	of	arrival	of	photons	at	the	
two	photocathodes	should	be	correlated	when	the	light	beams	incident	upon	the	two	
mirrors	are	coherent.	However,	so	far	as	we	know,	this	fundamental	effect	has	never	
directly	been	observed	with	light,	and	indeed	its	very	existence	has	been	questioned”	

HB	&T

They	were	right,	this	effect	has	never	been	observed	with	coherent	light:	it	could	not,	
since	it	occurs	only	with	incoherent	(chaotic)	light.	But	we	know	in	hindsight	that	the	
mercury	light	source	they	viewed	as	coherent	was	in	fact	incoherent,	something	they	did	
not	know	and	could	not	know	because	laser	was	not	yet	invented!



Bad	early reception of	the	1956	HBT	experiment
This	experiment favors the	wave theory of	light	and	seems to	contradict quantum	mechanics
and	the	photon	theory of	light.	It	was very puzzling for	physicists.	In	the	fifties	it provoked a	
heated debate about	the	concept	of	the	photon.

What is easily conceivable in	the	classical wave formalism (e.g.	with a	radio	wave)	becomes
hard	to	imagine	at	the	quantum	level:	why should photons	cling to	each other?

Later	(1991)	Hanbury	Brown	wrote	« To	me	the	interesting thing about	all	this fuss was that
so many physicists had failed to	grasp how	profoundly mysterious ligth really is,	and	were
relectant to	accept the	practical consequences of	the	fact that modern	physics does not	claim	
to	tell	us	what things are	like ‘in		themselves’	but	only how	they ‘behave’…	If	our	system	was	
really	going	to	work	one	would	have	to	imagine	photons	hanging	about,	waiting	for	each	
other	in	space!	»

In	fact HB	&	T became the	fathers of	a	new	discipline	« statistical optics »	which investigates
statistical laws for	photoncounting under various physical situations:	

« In	my opinion	HB	&	T is more	a	precursor of	the	quantum	optics effects involving photon	
correlation »	Alain	Aspect,	2009		



Some French	research in	physics at	that time	in	Orsay	
-1958:	Yves	Rocard from	Ecole Normale Supérieure who	helped	develop	the	French	atomic	bomb	builds	up	in	
Orsay the	linear	accelerator	of	particles	for	fundamuntal research	in	physics

-1961:	André	Blanc-Lapierre becomes	the	director	of	the	accelerator	and	builds	up	a	collision	ring	(Anneau de	
Collision	–ACO)	

-1963:	Collisions	between	electrons	and	positrons	are	observed	at	ACO	for	the	first	time	in	the	world.

-1965:	Bernard	Picinbono,	a	former	doctoral	student	of	A.	Blanc-Lapierre (in	Alger)	arrives	in	Orsay,	equipped	
with	expertise	in	the	necessary	statistical	tools:	in	optics,	it	is	not	possible	to	track	the	fluctuations	of	the	EM	
field	corresponding	to	a	huge	number	of	asynchronous	light	emitting	atoms.	

-1966:	Statistical	optics	launched	in	Orsay.	Bernard	had	investigated	the	detection	of	weak	optical	signals,	
embedded	in	the	backgroung random	noise	called	‘shot	noise’	(bruit	de	grenaille).	After	A.	Blanc-Lapierre,	he	
deepens	the	statistics	of	fluctuating	physical	phenomena.	He	launches	a	new	lab:	‘Laboratoire d’études des	
phénomènes aléatoires’	(LEPA),	with	research	program	in	statistical	optics	and	signal	processing.

-LEPA	was	well	located	in	the	Institut d’electronique fondamentale (IEF)	where	experiences	of	optical	
illumination	of	particle	and	lasers	were	experimented	with	powerful	electronic	microscope	designed!	



Bernard	Picinbono and	statistical optics
- Bernard	Picinbono wishes to	understand why the	
bunching effect of	photons	disappears with
monomode	(coherent laser)	light.	

- He	is convinced that the	classical (ABL)	approach works
for	laser	as	it does for	incoherent (natural)	light,	and	
that it should explain why the	bunching effect does not	
arise	with coherent light	

- In	1964	at	the	prestigious French	École	des	Houches	de	
Physique	Théorique	Bernard	meets Roy	Glauber	who
was presenting his quantum	theory of	optical
coherence (2005	Nobel	Prize)



After the	laser	discovery Roy	Glauber	introduces a	new	quantum	formalism
valid for	coherent and	incoherent beams:	it explains optical coherence



Bernard’s Orsay	team	of	young scientists
1967	he hires a	team	of	researchers to	launch Statistical Optics in	Orsay

experimenters in	optics (lasers)	:	
Cherif	Bendjaballah,	Martine	Rousseau-Le	Berre

theoricians in	mathematics and	physics:
◦ A	mathematician for	the	bunching effect of	bosons:	

Odile	Macchi,	experienced in	probabilities will deepen the	therory of	
permanental processes
◦ A	physicist for	fermions:	

Christine	Bénard,	who chose	the	quantum	formalism of	Glauber

Both collaborate for	fermions	:	discovery of	determinantal processes



Clever experimental physicists

A	sound experimental study (photocounting and	interval
measurements) for	the	PP	of	electrons emitted by	a	
cathode	impinged on	by	various types	of	light	beams,	
ranging from a	chaotic beam (thermal	light,	curve A),	unto a	
pure	laser	beam (coherent light,	curve E),	in	connection
with the	fluctuation	properties of	the	light	intensity.	The	
distribution	of	the	number of	electrons shows	clearly that
the	bunching effect is reserved to	chaotic beams





2014:	a	Germanmathematician writes a	strikingly humble	letter in	French	to	
Odile	Macchi

‘Madame,	m’autorisez-vous	à	traduire	votre	thèse	française	(200	pages)	
pour	publication	sous	forme	de	livre	anglais	par	mon	ami,	l’éditeur	allemand	
Dr.	Walter	Warmuth?’		Professor	Hans	Zessin,	Berlin

in	2017:	the	book	in	English
Hans:	Why	hundreds of	non	rewarding hours for	such a	work?
Walter:	Why taking the	risk of	editing a	book	with a	tiny market and	no	profit?	

Merely for	the	sake of	making truth known better!

‘To	give this seminal work the	place	it deserves,	as	a	cornerstone which
connects Quantum	Optics and	modern	point	process theory’	
(Book	introduction	p.	7)





Conclusion	…	of	my	thesis	(January	12,	1972)

My viewpoint:	find theoretical tools matched to	physics and	
experimentation
Goal:	use	these tools to	deepen the	statistical study of	bosons	and	
fermions
Further studies and	generalizations:	this is up	to	…	YOU!
- apply such tools to	other problems and	in	particular in	the	theoretical
statistics:	- find new	PP	models thanks to	the	theory of	coincidences
- enlarge the	theory to	
◦ abstract	spaces
◦marked or	other more	general PP



2.	The	theory of	coincidences:
Indistinguishable occurrences

Validity in	𝓧⊂	ℝ𝒏
No	assumption of	stationarity



The	coincidence densities
ℎ@(t1 ,…,	tk ) 𝑑𝑡F ...	𝑑𝑡@ =	Ε 𝑑𝑁 𝑡F …𝑑𝑁 𝑡@ =	Ρr 𝑑𝑁 𝑡F = 	… = 𝑑𝑁 𝑡@ = 1

The	ℎ@ are	the	probability densities that the	PP	has	k	occurrences	located in	the	
infinitesimal intervals 𝑡P, 𝑑𝑡P ,	j =	1,	…,	k, no	matter whether there are	other
occurrences	elsewhere or	not
The	CD	are	the	limiting aspect	of	the	joint	counting distributions.	They are	physically
measurable local	quantities,	independent of	the	volume	𝓧 where the	PP	is observed.	
Thus they allow extending the	definition of	the	PP	over	𝑎𝑙𝑙	ℝY.
They are	non	negative,	bounded,	symmetrical functions.	
They are	also the	densities of	the	factorial moments	of	the	 numbers of	points	in	
disjoint		intervals.
Not	any sequence of	non	negative symmetrical bounded functions (even properly
normalized)	represents the	CD	of	a	PP.	There	are	conditions.
For	a	non	stationary Poisson	process with intensity 𝜌 𝑡 ,	the	𝑑𝑁 𝑡^ are	independent:

◦ 	ℎ@(t1 ,…,	tk )	=	𝜌 𝑡F 	… 	𝜌 𝑡@ .



The	exclusion	densities
	𝑝Y(t1 ,…,𝑡Y)	=	𝑛!	Pr 𝑁 𝑋 = 𝑛, 𝑑𝑁 𝑡F = 	… = 𝑑𝑁 𝑡Y = 1

The		𝑝Y are	the	probability densities that the	PP	has	exactly n	occurrences	
located in	the	infinitesimal intervals 𝑡P, 𝑑𝑡P ,	j =	1,	…,	n, exclusive	of	any
other occurrence	elsewhere
Any sequence of	non	negative bounded symmetrical functions
𝑝Y(t1 ,…,𝑡Y) normalized according to

defines a	unique	regular PP	having this sequence as	ED.	No	other condition.
However the	ED	are	not	physically measurable
For	a	Poisson	process with intensity 𝜌 𝑡

◦ 	𝑝Y(t1 ,…,𝑡Y)	=	𝜌 𝑡F 	… 	𝜌(𝑡Y)	𝑒h ∫ j k lkm



Important	quantities
The	generating function of	the	total	number N	of		occurrences	in	𝓧
g	(𝑣)	=	E	 1	 − 𝑣 𝑁

The	probability of	no	occurrence	in	the	observed volume	𝒳 is
P	 𝑁 = 0 =	g	(1)
g	(𝑣)	expands ∑ −𝑣 𝑝t

uvw 𝐸(𝑁 u )/p!	)	which generates the	factorial moments,	

𝐸(𝑁 u )=	E (𝑁(𝑁 − 1)… (𝑁 − 𝑝 + 1))
The	fact that g	(𝑣)	is the	generating function of	a	non	negative integer plays a	
basic	role in	the	theory
The	joint	counting factorial moments	in	q disjoint	subsets I1 ,	I2 ,	…	,	Iq of	𝒳

M	 𝑝𝑞 =	E	{𝑁F
uF …	𝑁~

u~ } are	obtained	by	mere integration of	ℎuF�	…�u~	over	I1,	
I2,	…		Iq



Regular	PP
Let	𝒂𝒑be	the	convergence	radius	of	the	entire	series associated to	the	system	of	
ED

(	(	(=	∑ 𝑧Y�
Y 	P 𝑁 𝑋 = 𝑛 )

Result 1
if	𝒂𝒑 > 𝟏	the	probability	law	of	the	PP	is	completely	characterized	equivalently	
by	the	system	of	CD	or	by	the	system	of	ED.	Then	the system	of	CD	follows from
the	system	of	ED	through the	direct	relationships

and	the	PP	is called regular

Moreover 	𝒂𝒉	v	 𝒂𝒑 - 1,	where 𝒂𝒉	is the	convergence	radius	of	the	entire series
Φ�	(𝑧) similarly	associated	to	the	system	ℎ@(t1 ,…,	tk )	of	CD



Completely regular PP
A	regular PP	is said completely regular if	its system	of	ED	can be derived
from its system	of	CD	through the	inverse	relationships

Result 2:	if	𝒂𝒑 > 𝟐 or	equivalently 𝒂𝒉 > 𝟏 the	PP	is completely regular.

Result 3	(basic)	:	Coincidence based construction	of	a	completely regular PP	
A	system	of	non	negative,	bounded,	symmetrical functions ℎ@	(𝑡F, … , 𝑡@) is
the	system	of	CD	of	a	completely regular PP	if	𝒂𝒉 > 𝟏	and	
if	all	the	𝐬𝐞𝐫𝐢𝐞𝐬			𝒑𝒏(t1	,…,𝒕𝒏)	are	non	negative (the	normalizing condition	is
automatically satisfied).	Unicity of	this PP
Result 4:	If	𝒂𝒉 <	1	the	PP	is not	completely regular,	one	cannot derive the	ED	
from the	CD.	There	is no	general result if	𝒂𝒉=	1.



3.	Photons	and	bosons	in	a	chaotic state:	
permanental point	processes



Cox	(or	Conditioned Poisson)	Processes:	general regular case	
Definition:	A	regular Cox	process is a	PP	whose CD	are	the	moments	of	some non	negative function I(t)	
called the	underlying intensity:		

	 	ℎ@(t1 ,…,	tk )	=	E	 𝐼 𝑡F 	… 𝐼(𝑡@)

Let	I be the bounded rectangle	in	ℝ	� where the	PP	is observed,	and	I(t)	a non	negative random
function.	Then,	given a	sample of	I(t),	the	PP	is Poisson	with non	stationary intensity I(t),	because the	
form 𝐼 𝑡F 	… 𝐼(𝑡@)	of	its conditional CD	is characterisitic of	a	Poisson	process.	Thus physicists call	this
PP	a	conditioned Poisson	process.

Result 5	Existence	theorem:	If	a	non	negative random function I(t)	is such that

E 	exp	𝑎 ∫ 𝐼 𝜃 𝑑𝜃�

	
< ∞, 	for	some	𝑎 > 0,	

	 there	exists	a	unique	regular	Cox	Process	with	underlying	intensity	𝐼(𝑡) on	I.	Its CD	are	as	above and	its
ED	are 𝑝Y(t1 ,…,𝑡Y)	= E 𝐼 𝑡F 	… 𝐼(𝑡Y)exp	𝑎 ∫ 𝐼 𝜃 𝑑𝜃�

If	moreover	𝑎 > 1, this	Cox	process	is	completely	regular.

Result 6:	We have	proved the	existence	of	Cox	processes whose underlying intensities I(t) assume	
sometimes negative values.	This	is possible	e.g.	with a	Gaussian I(t) whose (positive)	mean value	m(t)	
dominates the	(positive)	covariance	function in	the	sense that m(𝑡) ≥ ∫ 𝐶 𝑡, 𝑢 𝑑𝑢	£ a.e.



1965:	Detecting photons	of	a	light	beam
a	general Cox	Process

Rev.	Mod.	Phys. 37,	pp.	231-287,	1965 “Coherence	properties	of	optical	fields Reviews	of	
Modern	Physics”	Mandel	L.	and	Wolf	E.:	with both the	classical and	quantum	mechanics
formalisms,	they showed that at	the	output	of	a	noiseless photodetecting surface	impinged
on	at	(𝑡 = time	𝜃, place	𝑥 )	by	a	partially polarized weak beam of	light	(natural or	laser),	
the	PP	is a	Cox	process whose underlying intensity is the	(random)	light	intensity :

	 	ℎ@(t1 ,…,	tk )	=	E	 𝐼 𝑡F 	… 𝐼(𝑡@) ; 	𝑝Y(t1 ,…,𝑡Y)	= E 𝐼 𝑡F 	… 𝐼(𝑡Y)exps ∫ 𝐼 𝜃 𝑑𝜃�

where s	 is the	detector	efficiency,	I is the	bounded rectangle	in	ℝ	ª where the	PP	is
observed, X(t) the	complex analytical signal	associated to	the	real	electromagnetic field
E(t);	and	I	(t) = s	 𝑿(𝒕) 2

There	are	different Cox	processes for	various statistical properties of	E(t)	(thus of	I(t)).
Cf in	particular the	many papers of	B.	Picinbono’s team	in	the	years 1968- 1975.
Perfect laser:	only the	phase	of	E(t)	fluctuates,	I(t)	non	random, the	PP	is nonstationary
Poisson.



1970	- Christine	Bénard’smodel:	
Beams of	quantum	particles with the	wave packet formalism

Extending the	work done at	second	order by	M.L.	Goldberger,	1963,	she	considered	
the	coincidences	of	all	orders:	𝐢n	a	finite rectangle	cavity I,	a	random numberN of	
noninteracting and	indistinguishable particles 𝑸𝒊 ,	either bosons	or	fermions	are	
superimposed.	 𝑄^ 	is	described	by	its	random	‘wave	packet’	∅ 𝒕𝒊 , 𝑡𝑖 =
	time	𝜃𝑖, location	𝑥𝑖 .	This	is	an	unobservable	model,	no	detetion	considered.	

The	wave	packets	are	independent	of	one	another	and	have	covariance	function
denoted f	 𝒕, 𝒖 = 𝐸 ∅ 𝑡 	∅ ∗ 𝑢 .	Means	are	quantum	mechanical averages.	

The	beam (EM	field)	is described by	its random ‘wave function’,	superposing all	
wave packets by	appropriate projections

☼ on	a	symmetrized space for	bosons	(integer spin)	

☼ on	an	anti-symmetrized space for	fermions	(spin	=	odd half-integer).	

The	EM	field covariance,	C(t,	u), follows from the	wave packets covariance

But	the	resut is intractable unless the	beam has	weak density

Even then it is neat for	bosons,	but	not	for	fermions.

Phys.	Rev A,	vol	2,	n° 5,	
2140-2153,	Nov.	1970	
« Fluctuations	of	
Beams of	quantum	
particles »	



The	permanental model	for	a	chaotic beam of	bosons
e.g.	photons	of	a	thermal	light

Result 7:	For	chaotic bosons	the	CD	are	written	solely	with	the	covariance of	the	wave function
C	(𝑡^,	𝑡P) = 	𝐸	 𝑋 𝑡^ 	𝑋∗(𝑡P) (not	necessarily stationary).	They	are	the	permanents	

hk(t1 ,	…	,	tk ) =	∑𝑃¼		 ∏ 𝐶(𝑡^			, 𝑡¼^
@
^vF

�
� )		of		the	matrices

𝐶(𝑡F, 𝑡F) ⋯ 𝐶(𝑡F, 𝑡@)
⋮ ⋱ ⋮

𝐶(𝑡@, 𝑡F) ⋯ 𝐶(𝑡@, 𝑡@)
	

∑ 𝑃𝛼�
� means	summing	over	all	permutations	(𝛼F, …𝛼𝑘)	of	(1, … ,	k)

Why?	Because the	field E(t)	is a	zero-mean Gaussian random process.	Its analytical signal		X(t)
(no	negative frequencies)	is a	complex, zero	mean, strongly	Gaussian	process	with	E	 𝑋 𝑡^ 	X(𝑡P) =	0.	

Result 8	(existence):	There	exists a	(unique)	PP	with the	above CD	
The	proof	uses	 𝜑𝑖(𝑡) ,	a	complete system	of	orthonormal functions on	I,	that are	eigenfunctions of	C(t,	u)	

𝜆𝑖	𝜑𝑖(𝑡)=	∫ 𝐶(𝑡, 𝑢)� 𝜑𝑖(𝑢)	du									𝜆𝑖	>	0,	 ∑ 𝜆𝑖�
^ < ∞, 											 ∫ 𝜑𝑖(𝑡)𝜑P∗(𝑡)� dt =	𝛿^,P

and	the	Kahrunen-Loeve expansionC(t,	u)	=	∑ 𝜆𝑖	𝜑𝑖(𝑡)𝜑^∗ 𝑢�
^ ,

to	show	positivity of	the	CD,	and	validity of	condition	E 	exp	𝑎 ∫ 𝐼 𝜃 𝑑𝜃�

	
< ∞,	e.g.	for	𝑎 < 1	/(2	𝜆ÈÉÊ)



The	exclusion	densities themselves are	permanents

Result	9 The	generating function for	the	detection of	a chaotic boson	beam is
E	 1	 − 𝑣 𝑁 =	g(𝑣)	=		∏ 1/(1 + 𝑣𝑠𝜆𝑖)t

^vF
With the	help	of	the	function 𝑓 𝑡, 𝑢 	related	to	the	field covariance	C(t,	u)	through

and	with the	permanents	of	the	matrices		
𝑓(𝑡F, 𝑡F) ⋯ 𝑓(𝑡F, 𝑡@)

⋮ ⋱ ⋮
𝑓(𝑡@, 𝑡F) ⋯ f(𝑡@, 𝑡@)

	

Then the	ED	are pn(t1 ,	…	,	tn ) =	sn h(s)	∑𝑃¼		 ∏ 𝑓(𝑡^			, 𝑡¼^
Y
^vF

�
� ) h	(s)	=	g	(1)

Moreover f(t,	u)	=	∑ (𝜆𝑖	/(1 + 𝑠𝜆𝑖))	𝜑𝑖(𝑡)𝜑^∗ 𝑢�
^ 	

which evidences that f(t,	u)	is a	covariance	function and	thus that these ED	are	indeed positive

Physically it	turns	out	that	f(t,	u) = 𝑬 ∅ 𝒕 	∅ ∗ 𝒖 	𝐢𝐬 the	wave packets’ covariance



Consistency

C(t,u) is the	covariance	function of	the	wave function,	X(t),	the	complex random
electromagnetic field

Thus C(t,u) is positive	definite

This	fact is of	critical importance	for	the	consistency of	the	PP	model.	

Through the	positivity of	the	eigenvalues 𝜆^,	this fact implies that f(t,u)	is also positive	
definite.

In	turn positive	definiteness of	f(t,u)	controls the	positivity of	the	function h(s)	and	of	the	
permanental expressions	of	the	CD	and	ED.	

Positive	definiteness of	f(t,u)	also controls the	(existence)	sufficient	condition	
E 	exp	É ∫ £ k lkÎ < ∞	for	some 𝑎 > 0.

Physical	considerations show	that f(t,u)	is the	covariance	function of	the	wave packets



The	bunching effect of	the	permanental PP
	.

Result 10:	Bunching effect :

𝒉𝟐(t1,	t2 )	=	𝒉𝟏(t1) 𝒉𝟏(t2 ) +	s2 |𝑪(t1,	t2	)|2 >	𝒉𝟏(t1) 𝒉𝟏(t2 )	

Or	equivalently
Pr{	dN(t2)	=	1/	dN(t1)	=	1}	=	Pr{	dN(t2)	=	1}	+	s	|𝑪(t1,	t2	)|2 /	C(t1, t1)

The	a	posteriori	probability to	detect any photon	at	a	given time,	when another
photon	has	been	detected in	a	neighboring time	(second	order coincidence)	is
higher than the	a	priori	probability to	detect a	photon	at	that time:	two photons	
tend	to	agregate!	

Chaotic photons	and	bosons	behave like sheeps!



Stationary (time)	case	:	C(t +d,	t)	=	𝛤 𝑑 	
E	(N)	=	T I̅

Lorentz	spectrum: 𝜏 = coherence	time	of	the	light	field

	𝛤 𝑑 = I	̅exp	(− 𝑑 /𝜏 )

Bunching effect:	𝐵2(d)	=	𝒉𝟐(t1 ,t2 )/ 𝒉𝟏(t1) 𝒉𝟏(t2 )	

=	1	+	exp (– 2 d /𝝉) (1:	no	agregation)

	 	

𝛾 𝜈 = 2	I̅ 𝜏 /(1	+	4	𝜋2𝜏2𝜈2)	

𝜈	𝜏

d/𝜏



Higher order bunching effects of	photons
(Lorentzian spectrum light)

Three	points	t1 ;	t2 =	t1+ d1 ;	t3 =	t2+d2 ,	d1 >	0;	d2 >	0
	If	𝐵3(d1,	d2)	=	ℎÛ(t1 ,t2 ,t3)/ ℎF(t1) ℎF(t2 )	ℎF(t3)
B3(d1,	d2)	=	𝐵2(d1) +	𝐵2(d2)	+	B2(d1+d2)	+ 2 exp – 2	(d1	+d2)/𝝉)
The	bunching factor	between three occurrences	is superior to	
the	sum of	the	three pairwise bunching factors
The	agregation tendency is reinforced as	the	number of	
occurrences	increases.



4.	Electrons	and	fermions	in	a	chaotic state:	
determinantal point	processes



A	very long	germination	…

Feb.	22,	2013
Etienne	Ghys to	Odile:	
On	this board,	is it you
« Théorème	de	Macchi
1975 »	?
Odile	to	Etienne
« Certainly not! »		

Here Alexander	
Bufetov,	of	the	Lyon	1	
University,	at	an	LATP
2013	Colloquium like
the	one	of	today



1973:	The	determinantal model	for	a	beam of	fermions	
Again	Christine	Bénard,	but	with Odile	Macchi:	J.	Math.	Ph.,	vol	14,	n° 2,	155-167,	Feb.	1973 « Detection
and	‘emission’	processes of	quantum	particles in	a	chaotic state».	With the	wave packet formalism we
considered a	random number N	 of	noninteracting and	indistinguishable fermions	(spin	=	odd half-
integers)	in	a	rectangle	cavity:	electrons,	protons,	neutrons	…	

The	particle 𝑄^ found in	𝑡^	is	described	by	its random wave packet ∅ 𝑡^ , not	necessarily real,	but	
independent of	the	other wave packets.	The	random wave function of	the	fermion	beam follows by	
appropriate projection	on	an	anti-symmetrized space.	Means are	quantum	mechanical averages with
respect	to	the	field operator.	 Then the	very intricate expression	of	the	CD	involves	the	covariance	C(t,	u)	
of	the	wave function.

For	a	chaotic beam,	the	CD	reduce to	the	determinants of	the	covariance	matrix

h	k(t1 ,	…	,	tk ) = det	𝐶 𝑡𝑘 = ∑𝑃¼		(−1)∏ 𝐶(𝑡^			, 𝑡¼^
@
^vF

�
� )

where C	{tk} =
𝐶(𝑡F, 𝑡F) ⋯ 𝐶(𝑡F, 𝑡@)

⋮ ⋱ ⋮
𝐶(𝑡@, 𝑡F) ⋯ 𝐶	(𝑡@, 𝑡@)

	

∑ 𝑃𝛼(−1)�
� means	summing	over	all	permutations	(𝛼F, …𝛼𝑘)	of	(1, … ,	k),	each term affected with the	

sign	(−1)Ý ¼ , 𝑟(𝛼)	denoting the	sign of	the	permutation	(𝛼F, …𝛼𝑘).	



Existence	of	determinantal PP
Result 11,	existence	of	DPP:	The necessary and	sufficient conditions	for	a	series of	
bounded,	symmetrical,	non	negative functions ℎ@(t1 ,…,	tk ) of	the	determinantal form to	
be the	CD	of	a	regular PP	on	I	are

Condition	1.	The	function C(t,	u)	on	which the	functions ℎ@(t1 ,…,	tk ) are	based is positive	
definite.	

This	condition	is necessary and	sufficient for	non	negativity of	all	the	ℎ@(t1 ,…,	tk )
Condition	2. 	𝝀𝒊 < 1	for	all	i.

Under	condition	1	there exists a	complete system	of	orthonormal functions 𝜑𝑖(𝑡) on	I	
that are	eigenfunctions of	C(t,	u)	

	𝜆𝑖	𝜑𝑖(𝑡)=	∫ 𝐶(𝑡, 𝑢)� 𝜑𝑖(𝑢)	du				∫ 𝜑𝑖(𝑡)𝜑P∗(𝑡)� dt =	𝛿^,P,						

and	such that C(t,	u)	=	∑ 𝜆𝑖	𝜑𝑖(𝑡)𝜑^∗ 𝑢�
^ ,

with the	basic	properties that 𝝀𝒊	>	0, ∑ 𝝀𝒊�
𝒊 < ∞



Proof	of	condition	2	
A	necessary condition:	If	the	model	is consistent	

g(𝑣)	=	∏ 	(1 − 𝑣𝜆𝑖)t
^vF

is the	generating function of	the	non	negative,	integer number N of	fermions	
This	requires that 𝝀𝒊 ≤ 𝟏, ∀	𝒊

and	even	that																																																															𝝀𝒊 <	1, ∀	𝒊

( 𝜆^w =	1	for	some i0	would yield all	the	ED	=	0)
A	sufficient condition: Assume	that 𝝀𝒊 < 𝟏, ∀	𝒊

Then the	inversion	formalism is valid and	yields the	functions

pn(t1 ,	…	,	tn ) =	∏ 	(1 − 𝜆𝑖)t
^vF ∑𝑃¼		(−1)∏ 𝑓(𝑡^			, 𝑡¼^

Y
^vF

�
� )

where f	(t,	u)	is the	resolvent of	the	Fredholm	equation:	

f	(t,	u)	- ∫ 𝑓	 𝑡, 𝜃 𝐶 𝜃, 𝑢 𝑑𝜃 = 𝐶 𝑡, 𝑢 			𝑡, 𝑢	 ∈ I	�

It	is worth f	(t,	u)	=	∑ 	(𝜆𝑖	/(1 − 𝜆𝑖))	𝜑𝑖(𝑡)𝜑^∗ 𝑢�
^ ,	and	thus is positive	definite.

Therefore the		pn(t1 ,	…	,	tn )	are non	negative,	they are	indeed the	ED



Physical	interpretation:	the	Pauli	exclusion	principle
In	the	wave packet formalism,	denote 𝜓@	(t)	a	complete system	of	orthonormal modes	for	the	
(bounded)	cavity I,	nk the	number of	fermions	in	mode	k,	 𝑛𝑘 its average.

Physical	considerations show	that the	wave packet covariance	g(t,	u)=	 ∅ 𝑡 ∅ 𝑢 reads:

g(t,	u) =		∑ ( 𝑛@@ /(1- 𝑛@ ))	𝜓@	(t)	𝜓@∗ 𝑢

Identification	with our model	Let		𝜆@= 𝑛𝑘 be	the	average numbers of	fermions	per	mode

	 																																																												𝜑𝑘(𝑡) = 	𝜓@	 (t)	be	the	modes	of	the	cavity	I

					then	our	𝑓 𝑡, 𝑢 	=	 ∑ 	(𝜆𝑖	/(1 − 𝜆𝑖))	𝜑𝑖(𝑡)𝜑^∗ 𝑢�
^ is	the	wave packet covariance	

Clearly the	𝝀𝒊 must	be positive	(condition	1):	they are	the	mean number of	fermions	per	mode

And	the	𝝀𝒊	should	be	less than 1	(condition	2): this is a	property specific of	fermion	beams:

‘At	most one	fermion	per	quantum	mode’,	i.e.	the	Pauli	exclusion	principle

C(t,	u)	=	∑ 𝜆𝑘	𝜑𝑘(𝑡)𝜑@∗ 𝑢�
@ becomes	the	(quantum)	covariance	of	the	wave function (field).



The	anti-bunching effect of	the	determinantal PP
Result 12:	Anti-bunching effect :	

			𝒉𝟐(t1,	t2 )	=	𝒉𝟏(t1) 𝒉𝟏(t2 )	- |𝑪(t1	,t2	)|2

	𝐵2(t1,	t2)	=	𝒉𝟐(t1,	t2 )/ 𝒉𝟏(t1) 𝒉𝟏(t2 )	=	1	- |𝑪(t1	,t2	)|2 /(𝒉𝟏(t1) 𝒉𝟏(t2 )	)	<	1	

(1:	no	exclusion)

𝐵2(t,	t)	=	0	absolute exclusion

The	a	posteriori	probability to	detect any fermion	at	a	given time,	when
another fermion	has	been	detected in	a	neighboring time	(second	order
coincidence)	is smaller than the	a	priori	probability to	detect a	fermion	at	that
time:	two fermions	tend	to	exclude each other!	At	higher orders the	
determinantal expressions	of	 CD	exhibit similar exclusion	properties.	

Chaotic fermions	(electrons)	behave like foes!



Example:	The	time	DPP	with Lorentzian properties
1.	The	stationary case:	Lorentz	spectrum
C(t +	d,	t)	=	𝛤 𝑑 = I	̅exp	(− 𝑑 /𝜏 ):	
	𝐵2(d)	=	1	- exp (– 2 d /𝝉)

2.	The	non	stationary case:	generalized renewal PP
C(𝑡F, 𝑡Û) C(𝑡Û, 𝑡ä) = C	(𝑡F, 𝑡ä) C(𝑡Û, 𝑡Û) with t 1	 ≤	t2	 ≤	t3
Let	D(t,	u) be the	normalized wave covariance:	C	(𝑡, 𝑢) =	D(t,	u) C 𝑡, 𝑡 C(𝑢, 𝑢)�

hn(t1 ,	…	,	tn) = ∏ C(𝑡^, 𝑡^)Y
^vF ∑𝑃¼		(−1)∏ 𝐷(𝑡^			, 𝑡¼^

Y
^vF

�
� )

hn(t1 ,	…	,	tn) =	∏ 	YhF
^vF (1- 𝐷 𝑡^, 𝑡^�F 2)∏ ℎ1(𝑡^	Y

^vF )	with successive	times	t 1	 ≤	…	≤	t3
This	characterizes generalized renewal:

intervals between successive	occurrences	are	independent but	not	equidistributed
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5.	The	symmetry between chaotic bosons	and	fermions



Which experimental results?
Bosons:	At	the	epoch we wrote our paper (1969-1972)	the	laser	was invented and	
much could be done experimentally to	evidence the	bunching effet.	Other bunching
effects have	been	observed with lasers,	according to	which part	of	the	field E(t)	
fluctuates (e.g.	only the	phase,	then I(t)	non	random,	the	PP	is nonstationary
Poisson).	

How	is the	bunching effect observed now?	Has	a	bunching effect higher than for	
chaotic photons	been	observed ?	What about	boson	particles other than photons?	

Fermions:	At	this epoch all	experimental fermion	sources,	even the	best	
monocinetic and	powerful ones (point-cathode	electron sources)	could not	provide
coherence times	larger than 10-13 sec.,	while electronic detection devices involved
integration over	times	on	the	order of	10-9	 sec.	much larger than the	coherence
time.	Therefore our paper was purely theoretical.	

How	the	anti-bunching effect has	it been	observed now?	for	electrons?	


