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1. The context of research in physics around my thesis







1954 sq Studies of André Blanc-Lapierre about random fonctions

La Vie et I'(Euvre
Scientifique
d’André
Blanc-Lapierre

Notice de Bernard Picinbono

La vie et I'ceuvre scientifique d’André Blanc-Lapierre,
Membre de I’Académie des sciences

7 juillet 1915 - 14 décembre 2001

par Bernard Picinbono, Correspondant de
I’Académie




André Blanc-Lapierre
a renown physicist and academician

- he left his mark by introducing in France the then emerging information
theory,

- he extended it to optics,

- well ahead of his time, he seeked to immerse Statistical Mechanics in a
rigorous probabilistic framework:

o Early in 1954 he first explained properly the phenomenom of optical
coherence (interference fringes) with the theory of random functions and
the notion of correlation. His papers, solely in French, were ignored
(knowingly?)

> 10 years later, with the discovery and development of lasers, this viewpoint
became universal. And it was extended by Roy Glauber in Quantum
Mechanics.




1954 ABL explains optical coherence, alias correlation between light beam fluctuations

OPTIQUE. — Sur la notion de cohérence en optique. Note (*) de MM. Axpre
Branc-Lapierre et Pierre Duomonter, présentée par M. Louis de Broglie.

Les auteurs précisent, dans le cas général de sources non monochromatiques, les
notions de cohérence, de cohérence partielle et d’incohérence pour un ensemble de
sources lumineuses. Des définitions mathématiques précises sont données dans Ie
cadre de la théorie des fonctions aléatoires.

L. Introduction. — L'’effet de la diffraction sur la correspondance objet-image
a été surtout étudié dans les cas d'un objet cohérent ou d’un objet incohérent (*).
Récemment, certains auteurs (*) ont considéré le cas d'une cohiérence partielle.

(*) Séance du 8 février 1934.
(\) P. M. Duerigox. L'intégrale de Fourier et ses applications ¢ I’ Optique, Rennes, 1946.
A. Bra~vc-Laperre et M. Perror, Comptes rendus, 231, 1950, p. 539.




Applying to optics his new theory of random functions

Mathematical foundations:
° ‘Theory of random functions’ A. Blanc-Lapierre, R. Fortet, Ed. Masson, Vol. 1 1965, Vol. 2 1968

Optics:
> A light source creates an electromagnetic field x(M, t) in space M at time t : it is a random function
> For incoherent light the field is a Gaussian random function

Coherence — Correlation:

> Two stationary light sources: in an observation point M two superimposed fields x,(t) and x, (t).
To create interferences (fringes), put a delay 7 on second source path  I{f, ©} = [24{t} + ®.{— <)]2.

> Average light intensity
JR)=E{ien} =E|lat| + E{ 22| + 2 4(=)
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1956

At the same time, The HBT Experiment

the first optical

coherence mercury liquid trasn?sl;i}ent square
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Fig. 3: The optical system set up by Hanbury Brown and Twiss.
Source: Hanbury Brown & Twiss, 1958, p. 299).




Reproduced from Nature (London) (1956) 177, 27-32

CORRELATION BETWEEN PHOTONS
IN TWO COHERENT BEAMS OF LIGHT

By R.Hanbury Brown
University of Manchester, Jodrell Bank Experimental Station
and

R.Q.Twiss
Services Electronics Research Laboratory, Baidock

“In this optical system, what is fundamental is that the time of arrival of photons at the

two photocathodes should be correlated when the light beams incident upon the two

mirrors are coherent. However, so far as we know, this fundamental effect has never

directly been observed with light, and indeed its very existence has been questioned”
HB &T

They were right, this effect has never been observed with coherent light: it could not,
since it occurs only with incoherent (chaotic) light. But we know in hindsight that the
mercury light source they viewed as coherent was in fact incoherent, something they did

not know and could not know because laser was not iet invented!



Bad early reception of the 1956 HBT experiment

This experiment favors the wave theory of light and seems to contradict quantum mechanics
and the photon theory of light. It was very puzzling for physicists. In the fifties it provoked a
heated debate about the concept of the photon.

What is easily conceivable in the classical wave formalism (e.g. with a radio wave) becomes
hard to imagine at the quantum level: why should photons cling to each other?

Later (1991) Hanbury Brown wrote « To me the interesting thing about all this fuss was that
so many physicists had failed to grasp how profoundly mysterious ligth really is, and were
relectant to accept the practical consequences of the fact that modern physics does not claim
to tell us what things are like ‘in themselves’ but only how they ‘behave’... If our system was
really going to work one would have to imagine photons hanging about, waiting for each
other in space! »

In fact HB & T became the fathers of a new discipline « statistical optics » which investigates
statistical laws for photoncounting under various physical situations:

« In my opinion HB & T is more a precursor of the quantum optics effects involving photon
correlation » Alain Aspect, 2009




Some French research in physics at that time in Orsay

-1958: Yves Rocard from Ecole Normale Supérieure who helped develop the French atomic bomb builds up in
Orsay the linear accelerator of particles for fundamuntal research in physics

-1961: André Blanc-Lapierre becomes the director of the accelerator and builds up a collision ring (Anneau de
Collision —ACO)

-1963: Collisions between electrons and positrons are observed at ACO for the first time in the world.

-1965: Bernard Picinbono, a former doctoral student of A. Blanc-Lapierre (in Alger) arrives in Orsay, equipped
with expertise in the necessary statistical tools: in optics, it is not possible to track the fluctuations of the EM
field corresponding to a huge number of asynchronous light emitting atoms.

-1966: Statistical optics launched in Orsay. Bernard had investigated the detection of weak optical signals,
embedded in the backgroung random noise called ‘shot noise’ (bruit de grenaille). After A. Blanc-Lapierre, he
deepens the statistics of fluctuating physical phenomena. He launches a new lab: ‘Laboratoire d’études des
phénomenes aléatoires’ (LEPA), with research program in statistical optics and signal processing.

-LEPA was well located in the Institut d’electronique fondamentale (IEF) where experiences of optical
illumination of particle and lasers were experimented with powerful electronic microscope designed!




Bernard Picinbono and statistical optics

- Bernard Picinbono wishes to understand why the
bunching effect of photons disappears with
monomode (coherent laser) light.

- He is convinced that the classical (ABL) approach works
for laser as it does for incoherent (natural) light, and
that it should explain why the bunching effect does not
arise with coherent light

- In 1964 at the prestigious French Ecole des Houches de
Physique Théorique Bernard meets Roy Glauber who
was presenting his quantum theory of optical
coherence (2005 Nobel Prize)




After the laser discovery Roy Glauber introduces a new quantum formalism
valid for coherent and incoherent beams: it explains optical coherence

VoLUME 10, NUMBER 3

PHYSICAL REVIEW LETTERS

1 FEBRUARY 1963

PHOTON CORRELATIONS*

Roy J. Glauber
Lyman Laboratory, Harvard University, Cambridge, Massachusetts
(Received 27 December 1962)

In 1956 Hanbury Brown and Twiss® reported
that the photons of a light beam of narrow spec-
tral width have a tendency to arrive in correlated
pairs. We have developed general quantum me-
chanical methods for the investigation of such
correlation effects and shall present here re-
sults for the distribution of the number of pho-
tons counted in an incoherent beam. The fact
that photon correlations are enhanced by narrow-
ing the spectral bandwidth has led to a prediction?
of large-scale correlations to be observed in the
beam of an optical maser. We shall indicate
that this prediction is misleading and follows
from an inappropriate model of the maser beam.
In considering these problems we shall outline

84

a method of describing the photon field which ap-
pears particularly well suited to the discussion

of experiments performed with light beams, wheth-
er coherent or incoherent.

The correlations observed in the photoioniza-
tion processes induced by a light beam were giv-
en a simple semiclassical explanation by Purcell,?®
who made use of the methods of microwave noise
theory. More recently, a number of papers have
been written examining the correlations in con-
siderably greater detail. These papers®*7® re-
tain the assumption that the electric field in a
light beam can be described as a classical Gaus-
sian stochastic process. In actuality, the be-
havior of the photon field is considerably more

@



Bernard’s Orsay team of young scientists

1967 he hires a team of researchers to launch Statistical Optics in Orsay

experimenters in optics (lasers) :
Cherif Bendjaballah, Martine Rousseau-Le Berre

theoricians in mathematics and physics:
> A mathematician for the bunching effect of bosons:

Odile Macchi, experienced in probabilities will deepen the therory of
permanental processes

° A physicist for fermions:
Christine Bénard, who chose the quantum formalism of Glauber

Both collaborate for fermions : discovery of determinantal processes
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LE JOURNAL DE PHYSIQUE TOME 30, AOUT-SEPTEMBRE 1969, PAGE 675.

Clever experimental physicists

PROPRIETES STATISTIQUES DES PHOTOELECTRONS

Par MarTiINE ROUSSEAU,

7 < Institut d’Electronique Fondamentale (1), Faculté des Sciences, 91-Orsay.

(Regu le 10 [évrier 1969.)

, A sound experimental study (photocounting and interval
. ' measurements) for the PP of electrons emitted by a
PP T e o nominsos cathode impinged on by various types of light beam:s,

F16. 1. — Distribution du nombre de photoélectrons dans

une expérience en « relaxeé », pour divers champs nmi- - rgngjng from a chaotic beam (thermal light, curve A), unto a

neux résultant de la superposition de champs gaussien

O mtooite toaie ae ot ¢ retle que e nombre PUTE laser beam (coherent light, curve E), in connection

moyen de photoélectrons comptés est 20 pour toutes . . . ] . .
les courbes.  orésente . pour un champ purement with the fluctuation properties of the light intensity. The
B b T o wn ehamp conerent 0. .. distribution of the number of electrons shows clearly that

Les courbes B, C et D sont relatives aux champs

superposés (éq. (4.3)), le paramitre m vaut respee-  the bunching effect is reserved to chaotic beams

tivement 1/3, 1 et 3, d’apres R. J. Glauber [24].
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THE COINCIDENCE APPROACH TO
STOCHASTIC POINT PROCESSES

ODILE MACCHI, Laboratoire d’Etude des Phénomeénes Aléatoires, Université de Paris-Sud

Abstract
The structure of the probability space associated with a general point process,
when regarded as a counting process, is reviewed using the coincidi form-

alism. The rest of the paper is devoted to the class of regular point processes
for which all coincidence probabilities admit densities. It is shown that their
distribution is completely specified by the system of coincidence densities.
The specification formalism is stressed for ‘completely’ regular point
processes. A construction theorem gives a characterization of the system of
coincidence densities of such a process. It permits the study of most models
of point processes. New results on the photon process, a particular type of
conditioned Poisson process, are derived. New examples are exhibited, includ-
ing the Gauss-Poisson process and the ‘fermion’ process that is suitable
whenever the points are repulsive.

STOCHASTIC POINT PROCESS; JOINT COUNTING EVENT; COINCIDENCE PROB-
ABILITY; COINCIDENCE DENSITY; EXCLUSION PROBABILITY DENSITY; REGULAR
PROCESS; PHOTON PROCESS; GAUSS-POISSON PROCESS; FERMION PROCESS

1. Introduction

The most usual way to deal with stochastic point processes (P.P.) is to consider
the distances or intervals between the successive points (or occurrences), a proce-
dure which applies when the space is one-dimensional only. Then, in the classical
approach [1]-[3], these quantities are taken as the basic random variables and
are used to define the probability distribution of the P.P. In [4], the very similar
idea of ‘forward recurrence times’ plays a crucial role in the study of P.P.
However the interval-method cannot be generalized to multidimensional P. P.

The other relevant quantity is the counting process N(1), i.e., the number of
occurrences in the interval (0, f]. Obviously the concept of counting process can
be extended to P.P. in a space of higher dimension. In fact, each realization of
the counting process is a positive discrete measure on the space X where the
occurrences are located. Putting a probability structure on the space of such
‘counting’ measures leads to possible definitions of P.P. such as given in [5]-[13].
Our work is in a close relationship with Moyal’s work [5].

However Moyal defines the P.P. events and their probabilities by considering
the points in space where the occurrences are located. He then shows ([5], Theo-

Received in revised form 9 September 1974.
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THE FERMION PROCESS —
A MODEL OF STOCHASTIC POINT PROCESS
WITH REPULSIVE POINTS

ODILE MACCHI

ORsAY

1. INTRODUCTION

This paper presents a model of stochastic point process (P.P.) whose occurrences
are repulsive to one another. The origin of the model arises in the theory of quantum
particles and describes the statistical distribution of a fermion system in thermal
equilibrium. For such a system, two P.P. can be defined which describe the places
of the particles at a given time or the instants when any particle passes in a given
point of space. Then physical arguments lead to the value of coincidence densities
(C.D.) of these P.P.

In section 2, we briefly recall how the system of C.D. can define the statistics of
a P.P. In section 3, we give the mathematical model of a fermion process (F.P.),
starting from these C.D. and we point out repulsivity. Then we prove the existence
of the F.P., give some details about the physical process, and illustrate the F.P.
with an cxample.

2. PRELIMINARIES: REGULAR POINT PROCESSES

For the sake of clarity, we must recall some useful material about P.P. These
ideas can be found with more details in [1], particularly a definition of P.P. suitable
for our purposes. We consider P.P. in R™ that is, the state space for the occurrences
is a Borel-set X in R™. The reference measure is the usual Lebesgue-measure.

2.1. Exlusion Probability Densities

Let p,,(t‘, <.wt,), n=0,1,..., be a sequence of non-negative, symmetrical and
measurable functions respectively defined on X".

391
J. Kozednik (ed.), Transactions of the Seventh Prague Conference on Information Theory,
Statistical Decision Functions, Random Processes and of the 1974 European Meeting of S

© ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences, Prague 1977




2014: a German mathematician writes a strikingly humble letter in French to
Odile Macchi

‘Madame, m’autorisez-vous a traduire votre these francaise (200 pages)

pour publication sous forme de livre anglais par mon ami, I'éditeur allemand
Dr. Walter Warmuth?’ Professor Hans Zessin, Berlin

in 2017: the book in English
Hans: Why hundreds of non rewarding hours for such a work?
Walter: Why taking the risk of editing a book with a tiny market and no profit?

Merely for the sake of making truth known better!

“To give this seminal work the place it deserves, as a cornerstone which
connects Quantum Optics and modern point process theory’
(Book introduction p. 7)
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Conclusion ... of my thesis (January 12, 1972)
My viewpoint: find theoretical tools matched to physics and
experimentation

Goal: use these tools to deepen the statistical study of bosons and
fermions

Further studies and generalizations: this is up to ... YOU!

- apply such tools to other problems and in particular in the theoretical
statistics: - find new PP models thanks to the theory of coincidences

- enlarge the theory to
° abstract spaces
> marked or other more general PP




2. The theory of coincidences:
Indistinguishable occurrences
Validityin X ¢ R"

No assumption of stationarity




The coincidence densities

hi(t;,.., t) dt; ...dt, = E[dN(t;) ...dN(t,)] = Pr[dN(t;) = ... =dN(t;) = 1]

The h;, are the probability densities that the PP has koccurrences located in the
infinitesimal intervals {tj, dt j }, j=1, .., k, no matter whether there are other
occurrences elsewhere or not

The CD are the limiting aspect of the joint counting distributions. They are physicall
measurable local quantities, indegendent of the volume X where the PP is observed.
Thus they allow extending the definition of the PP over all R".

They are non negative, bounded, symmetrical functions.

They are also the densities of the factorial moments of the numbers of points in
disjoint intervals.

Not any sequence of non negative symmetrical bounded functions (even properly
normalized) represents the CD of a PP. There are conditions.

For a non stationary Poisson process with intensity p(t), the dN (t;)are independent:
o hy(ty,... t) =p(ty) ... p(ty).




The exclusion densities

Pn(t,.oty) =n!PrIN(X) =n,dN(t;) = .. =dN(t,) = 1]

The p,, are the probability densities that the PP has exactly n occurrences

located in the infinitesimal intervals {t dt ; j } j=1, ..., n, exclusive of any
other occurrence elsewhere

Any sequence of non negative bounded symmetrical functions

pn(t; ,...t,) normalized according to
- |1
X — f pu(ty, s t)dt, --dt, = 1.
n=0 N: Xxn
defines a unique regular PP having this sequence as ED. No other condition.
However the ED are not physically measurable

For a Poisson process with intensity p(t)
o pn(tl ,...,tn) — p(tl) p(tn) e_fX p(6)deo




Important quantities
The generating function of the total number N of occurrences in X

g(w)=E{(1 —v)"}
The probability of no occurrence in the observed volume X is
P{N=0}=g(1)

g (v) expands Y.,;_o(—v)? E (NP1 /p!) which generates the factorial moments,
EINPHh=EWNWN -1)..(N-p+ 1))

The fact that g (v) is the generating function of a non negative integer plays a
basic role in the theory

The joint counting factorial moments in g disjoint subsets I, [, , ..., I . of X

M{p,} =E {Nl[pl] Ncgpq]} are obtained by mere integration of hy, 4 +p, OVer I,
[, .. 1

O



Regular PP

Let a,,be the convergence radius of the entire series associated to the system of
ED o

z"
09 = I 5 [ plonntdi e o by )

Result 1

if a, > 1 the probability law of the PP is completely characterized equivalently
by the system of CD or by the system of ED. Then the system of CD follows from
the system of ED through the direct relationships

< 1
hk(tl,“‘,tk)= Z 'Tf pk+j(tla"':tkael,""oj)dol"'dejQ
j=o0 J: Jxy

and the PP is called regular

Moreover aj = a, - 1, where ay is the convergence radius of the entire series
®,, (z) similarly associated to the system hy (¢ ,..., ;) of CD




Completely regular PP

A regular PP is said completely regular if its system of ED can be derived
from its system of CD through the inverse relationships
) (_ 1).i
pn(tla'", tn) = 2 1 ; hn+j(t1,°",tm01"”sgj)del”'dgj
j X

j=0 J:

Result 2: if @), > 2 or equivalently aj > 1 the PP is completely regular.

Result 3 (basic) : Coincidence based construction of a completely regular PP

A system of non negative, bounded, symmetrical functions {hy, (ty, ..., t;)} is
the system of CD of a completely regular PP if a;, > 1 and

if all the series p,(t,,...t,) are non negative (the normalizing condition is
automatically satisfied). Unicity of this PP

Result 4: If a;, < 1 the PP is not completely regular, one cannot derive the ED
from the CD. There is no general result if ap= 1.




3. Photons and bosons in a chaotic state:
permanental point processes




Cox (or Conditioned Poisson) Processes: general regular case

Definition: A regular Cox process is a PP whose CD are the moments of some non negative function /(%)
called the underlying intensity:

hie (b e ) = E[1(t1) . 1(8)]

Let I be the bounded rectangle in R L where the PP is observed, and I(t) a non negative random
function. Then, given a sample of I(t), the PP is Poisson with non stationary intensity /(t), because the
form I(t;) ...I(ty) of its conditional CD is characterisitic of a Poisson process. Thus physicists call this
PP a conditioned Poisson process.

Result 5 Existence theorem: If a non negative random function /(%) is such that
E[exp afl I(G)d@] < oo, forsomea > 0,

there exists a unique regular Cox Process with underlying intensity I(t) on I. Its CD are as above and its
ED are Pn(ty,ntn) = E[I(tl) I (ty)exp afl I(G)d@]
If moreover a > 1, this Cox process is completely regular.

Result 6: We have proved the existence of Cox processes whose underlying intensities /(t) assume
sometimes negative values. This is possible e.g. with a Gaussian I(t) whose (positive) mean value m(t)

dominates the (positive) covariance function in the sense that m(t) > fI C(t,u)du a.e.




1965: Detecting photons of a light beam
a general Cox Process

Rev. Mod. Phys. 37, pp. 231-287, 1965 “Coherence properties of optical fields Reviews of
Modern Physics”Mandel L. and Wolf E.: with both the classical and quantum mechanics
formalisms, they showed that at the output of a noiseless photodetecting surface impinged
on at (t = {time 6, place x}) by a partially polarized weak beam of light (natural or laser),
the PP is a Cox process whose underlying intensity is the (random) light intensity :

hi(t;,... t,) =E[I(t)) ..I(t)]; pn(ty,uty) = E[I(tl) ...I(tn)expsfI 1(6)do ]

where s is the detector efficiency, I is the bounded rectangle in R * where the PP is

observed, X(t) the complex analytical signal associated to the real electromagnetic field
E(®;and I (t) = s|X(1)|?

There are different Cox processes for various statistical properties of E(t) (thus of I(f)).
Cf in particular the many papers of B. Picinbono’s team in the years 1968- 1975.

Perfect laser: only the phase of E(¢) fluctuates, I(f) non random, the PP is nonstationary
Poisson.




1970 - Christine Bénard’s model:

Beams of quantum particles with the wave packet formalism

Extending the work done at second order by M.L. Goldberger, 1963, she considered
the coincidences of all orders: in a finite rectangle cavity I, a random numberN of
noninteracting and indistinguishable particles {Q;}, either bosons or fermions are
superimposed. {Q;} is described by its random ‘wave packet’ @(t;), t; =

{ time 0,, location xi}. This is an unobservable model, no detetion considered.

The wave packets are independent of one another and have covariance function
denoted f(t,u) = E{@(t) ®  (u)}. Means are quantum mechanical averages.

The beam (EM field) is described by its random ‘wave function’, superposing all
wave packets by appropriate projections

Phys. Rev A, vol 2, n° 5, #* on a symmetrized space for bosons (integer spin)

2140-2153, Nov. 1970
« Fluctuations of

Beams of quantum The EM field covariance, C(t, u), follows from the wave packets covariance
particles »

¥ on an anti-symmetrized space for fermions (spin = odd half-integer).

But the resut is intractable unless the beam has weak density

Even then it is neat for bosons, but not for fermions.




The permanental model for a chaotic beam of bosons
e.g. photons of a thermal light

Result 7: For chaotic bosons the CD are written solely with the covariance of the wave function
C(tytj))=E [X (t) X *(tj)] (not necessarily stationary). They are the permanents

C(tl.,tl) C(tl.,tk)>

h(t,...t)=YP, [I,C(; , ty ) of the matrices ( ; : :
C(te,ty) - C(ty ty)

Y. P, means summing over all permutations (a4, ... a;) of (1, ..., k)

Why? Because the field E(t) is a zero-mean Gaussian random process. Its analytical signal X(t)
(no negative frequencies) is a complex, zero mean, strongly Gaussian process with E [X (t;) X(tj)] = 0.

Result 8 (existence): There exists a (unique) PP with the above CD
The proof uses {¢,(t)}, a complete system of orthonormal functions on I, that are eigenfunctions of C(t, u)

A; <Pi(t)=f1 C(t,u) ;(u) du A;>0, 2k < o, fI ‘Pi(t)‘P;(t) dt =9 ;
and the Kahrunen-Loeve expansion C(t, u) =); 1, ¢,(t)p; (u),
to show positivity of the CD, and validity of condition E[ exp afl 1(6)de ] <oo,eg fora<1/2 Anax)




The exclusion densities themselves are permanents

Result 9 The generating function for the detection of a chaotic boson beam is
E{1 -} =g(v) = [z, 1/(1 + vsA)
With the help of the function f(t, u) related to the field covariance C(t, u) through

Flt.u) +s/IC(t,9)f(9,u) 46 = C(t,u)
f(t1.» t1) f(tl.r tk))

and with the permanents of the matrices ( : : :
fet) - £t te)

Then the ED are Pu(ty, o, ty) =s"h(S) NPy IIiZ1 f(ti ,ta) h(s) =g (1)
Moreover ft 1) =3, /(L + 5A)) 9,00} (@)

which evidences that f(t, u) is a covariance function and thus that these ED are indeed positive

Physically it turns out that f{t, u) = E{@(t) @~ (u)} is the wave packets’ covariance




Consistency

C(tu) is the covariance function of the wave function, X(t), the complex random
electromagnetic field

Thus C(t,u) is positive definite
This fact is of critical importance for the consistency of the PP model.

Through the positivity of the eigenvalues 4;, this fact implies that f(t,u) is also positive
definite.

In turn positive definiteness of f(t,u) controls the positivity of the function A(s) and of the
permanental expressions of the CD and ED.

Positive definiteness of f(t,u) also controls the (existence) sufficient condition

al 1(6)dé

E[ exp ] < oo for some a > 0.

Physical considerations show that f(t,u) is the covariance function of the wave packets




The bunching effect of the permanental PP

Result 10: Bunching effect :
ha(t, &) = hy(t) hy (L) + 57 |C(L, &) *> he(8) hi (L)

Or equivalently
Pr{ dN(t,) = 1/ dN(t,) = 1} = Pr{ dN(t;) = 1} + s [C(1;, ;) [? / C(4;, )

The a posteriori probability to detect any photon at a given time, when another
photon has been detected in a neighboring time (second order coincidence) is
higher than the a priori probability to detect a photon at that time: two photons
tend to agregate!

Chaotic photons and bosons behave like sheeps!




Stationary (time) case: C(t+d ) =I'(d)
E(N)=TI

spectre de Lorentz Lorentz spectrum: t = coherence time of the light field

1.2

I'(d) =Texp (—|d|/T)
Bunching effect: B,(d) = hy(t;,t,)/ h1(t) h(t,)
=1+ exp (- 2|d|/t) (1:no agregation)

Bunching effect

22

y(v) =217 /(1 + 4 n?12v?)




Higher order bunching effects of photons
(Lorentzian spectrum light)

Three points t;; t, = t;+ d, ; ;b =t,+d,,d; > 0; d, > 0
If B3(dy, dy) = ha(t,t;,85)/ ha(t) ha(y) hi(8)
B;(d, d,) = B,(d,) + B,(d;) + B,(di+d,) + 2 exp -2 (d, +d,)/7)

The bunching factor between three occurrences is superior to
the sum of the three pairwise bunching factors

The agregation tendency is reinforced as the number of
occurrences increases.




4. Electrons and fermions in a chaotic state:
determinantal point processes




A very long germination ...

Feb. 22, 2013

Etienne Ghys to Odile:

On this board, is it you
« Théoreme de Macchi
1975 » ?

Odile to Etienne

« Certainly not! »

Here Alexander
Bufetov, of the Lyon 1
University, at an LATP
2013 Colloquium like
the one of today



1973: The determinantal model for a beam of fermions

Again Christine Bénard, but with Odile Macchi: J. Math. Ph., vol 14, n°® 2, 155-167, Feb. 1973 « Detection
and ‘emission’ processes of quantum particles in a chaotic state». With the wave packet formalism we
considered a random number N of noninteracting and indistinguishable fermions (spin = odd half-
integers) in a rectangle cavity: electrons, protons, neutrons ...

The particle {Q;} found in t; is described by its random wave packet @(t;), not necessarily real, but
independent of the other wave packets. The random wave function of the fermion beam follows by
appropriate projection on an anti-symmetrized space. Means are quantum mechanical averages with
respect to the field operator. Then the very intricate expression of the CD involves the covariance C(t, u)
of the wave function.

For a chaotic beam, the CD reduce to the determinants of the covariance matrix
hilty, ., ) =det C{t,} = TPy (DI, (& L)
C(ty,ty) - C(tg,ty) >

where C{t} =< : : :
Cte,t1) - € (tp ty)

Y. P,(—1) means summing over all permutations (a4, ... a;) of (1, ..., k), each term affected with the
sign (—1)"®, r(a) denoting the sign of the permutation (a, ... @;).




Existence of determinantal PP

Result 11, existence of DPP: The necessary and sufficient conditions for a series of
bounded, symmetrical, non negative functions hy (¢, ,..., t; ) of the determinantal form to
be the CD of a regular PP on I are

Condition 1. The function C(t, u) on which the functions hy (¢, ,..., t; ) are based is positive
definite.

This condition is necessary and sufficient for non negativity of all the hy (¢, ,..., t;,)
Condition 2. 4; <1 forall i

Under condition 1 there exists a complete system of orthonormal functions {¢;(t)} on I
that are eigenfunctions of C(t, u)

LoO)=] Ctw o) du [ ¢,O)e;()dt=26;),
and such that Citu)=%; 1 ;,()p; (w),
with the basic properties that 4, >0, };;4; < o




Proof of condition 2

A necessary condition: If the model is consistent
gw) =12, (1 —vA)

is the generating function of the non negative, integer number N of fermions

This requires that AL <1LVi
and even that A, <1,Vi
(4;, = 1for some j, would yield all the ED = 0)

A sufficient condition: Assume that AL, <1LVi

Then the inversion formalism is valid and yields the functions
Polty, s ty) =121 A=) X Py (D Iz f (i S ta)
where f (t, u) is the resolvent of the Fredholm equation:
fau- [ f60)COwds=C(tu) tu €l
It is worth f(tu) =Y, (1, /(1 —=21)) ¢;,(t)p; (u), and thus is positive definite.

Therefore the p,(t,, ..., t, ) are non negative, they are indeed the ED




Physical interpretation: the Pauli exclusion principle

In the wave packet formalism, denote ;. (t) a complete system of orthonormal modes for the
(bounded) cavity I, n, the number of fermions in mode k;, (n,) its average.

Physical considerations show that the wave packet covariance g(t, u)=(@(t)|?(u))reads:
g8t u) = Xy ((ng)/(1- () Y (O P (W)
Identification with our model Let 1, = (n,) be the average numbers of fermions per mode
0. (t) = Yy (t) be the modes of the cavity |
thenour f(t,u) = ); (4, /(1 = 1)) ¢,(t)p; (u) is the wave packet covariance

Clearly the 4; must be positive (condition 1): they are the mean number of fermions per mode

And the 4, should be less than 1 (condition 2): this is a property specific of fermion beams:

‘At most one fermion per quantum mode’, i.e. the Pauli exclusion principle

C(t u) =Y Ay 0, ()@ (1) becomes the (quantum) covariance of the wave function (field).




The anti-bunching effect of the determinantal PP

Result 12: Anti-bunching effect :
hy(t, ) = hi(t) hy (L) - |C(L,5)I?
B,(t, &) = ha(t, )/ ha(t) he (&) =1-[C(¢,5)1? /(he(8) he(t) ) <1
(1: no exclusion)
B,(t t) = 0 absolute exclusion

The a posteriori probability to detect any fermion at a given time, when
another fermion has been detected in a neighboring time (second order
coincidence) is smaller than the a priori probability to detect a fermion at that
time: two fermions tend to exclude each other! At higher orders the
determinantal expressions of CD exhibit similar exclusion properties.

Chaotic fermions (electrons) behave like foes!




Example: The time DPP with Lorentzian properties

1,2000

B;(d)

1. The stationary case: Lorentz spectrum
Cit+d t)=T(d) =Texp (—|d|/T):
B,(d) = 1-exp (- 2|d|/7)

2. The non stationary case: generalized renewal PP oo

C(ty, t;) C(ty, t3) = C(ty, t3) C(ty, t) with t, < t, < t;

Let D(t, u) be the normalized wave covariance: C (t,u) = D(¢, u) {/ C(t, t) C(u, u)
hy(t, o, t) =112 €@y t) X Py (D12 D& S ta)

h(t, .., t) =11 (A-ID(t;, ti ) 1D [T hy(t; ) with successive times t; < ...< t;
This characterizes generalized renewal:

intervals between successive occurrences are independent but not equidistributed




5. The symmetry between chaotic bosons and fermions

The general inversion formlism

Mt = T [ sty ,0)d0, - do,

= 3 &V
pn(tla ] tn) j§o ]!

f Bs f(ts s by O, -+, 0,) d0y -+ dO;
XJ

The chaotic fields

f(t u) = E{@(t) ®*(w)} is the wave packets’ covariance

C(t u) =3, i gi(t)p; (u) is the beam covariance, 1i >0, ¥; i < o

Aii(t)=["C(t,u) pi(w) du [~ @i(t)p;(t) dt=6;;,

Bosons

Fermions

Ai>0

0<di<l1

gw) =112, 1/(1 + svAi), h(s) = g(1)

f(t,u)+s/[C(t,9)f(9,u) d6 = C(t,u)

@ =Mz,
ftu)- [7f(t 0)C(6,u)dd =C(t,u) t,u €l

ft, u) = ¥i(Ai /(1 + sA)) @i(V)e; (W)

£t w=¥; (/1 —A)) gi(t)p;(w)

Permanents
vh“k(tll ey tk) = Z Pa H{'czl C(tl ’ tai)

Determinants
llk(tl ) weny tk) = Z Pa (_1) H?:l C(tl ’ tat)

Poft1, ..., tn) =5" h(s) X P, H?=1f(ti » tai)

,Qa(,tl, ey tn) = H:)o:l (1 - AI') Zpa (_1) H?=1f(ti ’ tai)

Bunching effect : h,(t1, &) = hy(t) hy(t2) + 52 |C(t, &2)]?

Anti-bunching effect h,(t, ) =h,(t) h1(2) - |C(t:1 ,t2)|?




Which experimental results?

Bosons: At the epoch we wrote our paper (1969-1972) the laser was invented and
much could be done experimentally to evidence the bunching effet. Other bunching
effects have been observed with lasers, according to which part of the field E(t)
fluctuates (e.g. only the phase, then I(t) non random, the PP is nonstationary
Poisson).

How is the bunching effect observed now? Has a bunching effect higher than for
chaotic photons been observed ? What about boson particles other than photons?

Fermions: At this epoch all experimental fermion sources, even the best
monocinetic and powerful ones (point-cathode electron sources) could not provide
coherence times larger than 1013 sec., while electronic detection devices involved
integration over times on the order of 10° sec. much larger than the coherence
time. Therefore our paper was purely theoretical.

How the anti-bunching effect has it been observed now? for electrons?




