Noninteracting trapped fermions: from random matrices to stochastic growth models

Grégory Schehr, LPTMS CNRS/Université Paris-Sud, Orsay

Determinantal point processes and fermions Lille, February 6-8 2019 Noninteracting trapped fermions: from random matrices to stochastic growth models

Grégory Schehr, LPTMS CNRS/Université Paris-Sud, Orsay

Determinantal point processes and fermions Lille, February 6-8 2019

in collaboration with

- David S. Dean (LOMA, Univ. of Bordeaux)
- Bertrand Lacroix-A-Chez-Toine (LPTMS, Univ. Paris Sud)
- Pierre Le Doussal (LPTENS, Ecole Normale Sup., Paris)
- Satya N. Majumdar (LPTMS, Univ. Paris-Sud)

Phys. Rev. A 94, 063622 (2016) & arXiv: 1810.12583

Ultra-cold atoms in confining potentials

Recent progress in the experimental manipulation of cold atoms

to investigate the interplay between quantum and thermal behaviors in many-body systems at low temperature

Ultra-cold atoms in confining potentials

Recent progress in the experimental manipulation of cold atoms

to investigate the interplay between quantum and thermal behaviors in many-body systems at low temperature

A common feature of these experiments: presence of a confining potential that traps the atoms within a limited spatial region

Quantum Fermi gas microscope

Direct imaging of spatial fluctuations of the positions of fermions

M. Greiner et al., PRL 2015

Tuning the interactions

Reaching the non-interacting limit to probe purely quantum effects

Tuning the interactions

Reaching the non-interacting limit to probe purely quantum effects

Interesting quantum many-body effects even in the absence of interactions

Bosons: Bose-Einstein condensation

Fermions: Pauli exclusion principle \implies rich quantum many-body physics

bulk: traditional many-body physics (translationally invariant system)

Ultra-cold atoms in confining potentials V(x)X bulk edge edge

bulk: traditional many-body physics (translationally invariant system)

Ultra-cold atoms in confining potentials V(x) \mathcal{X} bulk edge edge

bulk: traditional many-body physics (translationally invariant system) «The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges.»

W. Kohn, A. E. Mattsson, PRL 1998

Ultra-cold atoms in confining potentials V(x)X edge bulk edge

bulk: traditional many-body physics (translationally invariant system)

This talk: random matrix theory is the ideal tool to study these edge properties

Ultra-cold atoms in confining potentials V(x)xedge bulk edge

bulk: traditional many-body physics (translationally invariant system)

edge: new physics induced by confinement —> universal edge properties

This talk: random matrix theory is the ideal tool to study these edge properties

Spinless free fermions in a 1d harmonic potential

Spinless free fermions in a 1d harmonic potential

At zero temperature: connection between spinless free fermions in a harmonic trap and Random Matrix Theory (GUE)

A single quantum particle in a harmonic potential

A single quantum particle in a harmonic potential

Single particle eigenfunctions

 $\hat{H}\,\varphi_E(x) = E\,\varphi_E(x)$

with $\varphi_E(x \to \pm \infty) = 0$

$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi}2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

$$\epsilon_k = \hbar\omega(k+1/2) , \quad \alpha = \sqrt{m\omega/\hbar}$$

$$k \in \mathbb{N}$$

A single quantum particle in a harmonic potential

The N-particle wave function is given by a $N \times N$ Slater determinant

$$\Psi_0(x_1, x_2, \cdots, x_N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(x_j)] \qquad 0 \le i \le N-1$$
$$1 \le j \le N$$
$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi}2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

Ground-state wave function

$$\Psi_0(x_1, x_2, \cdots, x_N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(x_j)] \qquad 0 \le i \le N-1$$
$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi}2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

Ground-state wave function

-

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) = \frac{1}{\sqrt{N!}} \det[\varphi_{i}(x_{j})] \qquad 0 \leq i \leq N-1$$

$$\varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!}\right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \det[H_{i}(\alpha x_{j})]$$
Hermite polynomial of degree i

Ground-state wave function

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) = \frac{1}{\sqrt{N!}} \det[\varphi_{i}(x_{j})] \qquad 0 \le i \le N-1$$

$$\varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!}\right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \det[H_{i}(\alpha x_{j})]$$

$$\text{Hermite polynomial of degree } i$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \prod_{1 \le j < k \le N} (x_{j} - x_{k})$$

Ground-state wave function

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) = \frac{1}{\sqrt{N!}} \det[\varphi_{i}(x_{j})] \qquad 0 \leq i \leq N-1$$

$$1 \leq j \leq N$$

$$\varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!}\right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \det[H_{i}(\alpha x_{j})]$$

$$Hermite \text{ polynomial of } degree \ i$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \prod_{1 \leq j < k \leq N} (x_{j} - x_{k})$$

Probability density function (PDF) of the positions $x_i's$

$$|\Psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$
where $\alpha = \sqrt{m\omega/2}$

where $\alpha = \sqrt{m\omega/\hbar}$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i< j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

where $\alpha = \sqrt{m\omega/\hbar}$

• Let J be a $N \times N$ random Hermitian matrix with Gaussian (complex) entries. The PDF of the (real) eigenvalues $\lambda'_i s$ is given by

$$P_{\text{joint}}(\lambda_1, \cdots, \lambda_N) = \frac{1}{Z_N} \prod_{i < j} (\lambda_i - \lambda_j)^2 e^{-\sum_{i=1}^N \lambda_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1,\cdots,x_N)|^2 = rac{1}{z_N(\alpha)} \prod_{i< j} (x_i - x_j)^2 e^{-lpha^2 \sum_{i=1}^N x_i^2}$$

where $\alpha = \sqrt{m\omega/\hbar}$

• Let J be a $N \times N$ random Hermitian matrix with Gaussian (complex) entries. The PDF of the (real) eigenvalues $\lambda'_i s$ is given by

$$P_{\text{joint}}(\lambda_1, \cdots, \lambda_N) = \frac{1}{Z_N} \prod_{i < j} (\lambda_i - \lambda_j)^2 e^{-\sum_{i=1}^N \lambda_i^2}$$

The positions of the free fermions behave statistically like the eigenvalues of GUE random matrices

What about other (unitary) matrix models ?

Laguerre Unitary Ensemble can be realized with a singular potential

$$V(x) = \frac{\alpha(\alpha - 1)}{x^2} + \beta x^2 , \ x > 0$$

Nadal, Majumdar, PRE '09

What about other (unitary) matrix models ?

Laguerre Unitary Ensemble can be realized with a singular potential

$$V(x) = \frac{\alpha(\alpha - 1)}{x^2} + \beta x^2 , \ x > 0$$

Nadal, Majumdar, PRE '09

Jacobi Unitary Ensemble can be realized with a box potential

$$V(x) = \begin{cases} 0, & -1 \le x \le +1 \\ +\infty, & |x| > 1 \end{cases}$$

Lacroix-A-Chez-Toine, Le Doussal, Majumdar, G. S., EPL '17 Dean, Le Doussal, Majumdar, G. S., arXiv:1810.12583

Properties of fermions in a 1d harmonic trap at T=0

Probability density function (PDF) of the positions of the fermions $x_i's$

$$\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

The spatial properties of free fermions in a harmonic trap a^{\dagger} T=0 can directly be obtained from the known results in RMT

Eisler '13/Marino, Majumdar, G. S., Vivo '14/Calabrese, Le Doussal, Majumdar '15

Properties of fermions in a 1d harmonic trap at T=0

Probability density function (PDF) of the positions of the fermions $x_i^\prime s$

$$\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

The spatial properties of free fermions in a harmonic trap a^{+} T=0 can directly be obtained from the known results in RMT

Eisler '13/Marino, Majumdar, G. S., Vivo '14/Calabrese, Le Doussal, Majumdar '15

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x, T = 0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x - x_i) \rangle$$

for $N \gg 1$ $\rho_N(x, T = 0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi} \sqrt{2 - z^2}$
Properties of fermions in a 1d harmonic trap at T=0

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x,T=0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

for $N \gg 1$ $\rho_N(x,T=0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi}\sqrt{2-z^2}$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

Average density of fermions at T=0: two scales

Average density: $ho_N(x,T=0) \sim rac{lpha^2}{2N} \sqrt{rac{2N}{lpha^2} - x^2}$, $r_{
m edge} = \sqrt{2N}/lpha$

Average density of fermions at T=0: two scales

Average density: $\rho_N(x, T = 0) \sim \frac{\alpha^2}{2N} \sqrt{\frac{2N}{\alpha^2} - x^2}$, $r_{edge} = \sqrt{2N}/\alpha$ bulk interparticle distance: $\int_0^{\ell_{bulk}} \rho_N(x, T = 0) \, dx \approx 1/N \Longrightarrow \ell_{bulk} \sim \frac{1}{\alpha} N^{-1/2}$

Average density of fermions at T=0: two scales

Average density: $\rho_N(x, T = 0) \sim \frac{\alpha^2}{2N} \sqrt{\frac{2N}{\alpha^2} - x^2}$, $r_{edge} = \sqrt{2N}/\alpha$ bulk interparticle distance: $\int_0^{\ell_{bulk}} \rho_N(x, T = 0) \, dx \approx 1/N \Longrightarrow \ell_{bulk} \sim \frac{1}{\alpha} N^{-1/2}$ edge interparticle distance: $\int_{r_{edge}}^{r_{edge}} \rho_N(x, T = 0) \, dx \approx 1/N \Longrightarrow \ell_{edge} \sim \frac{1}{\alpha} N^{-1/6}$

Edge density for finite N at T=0

Edge density for finite N at T=0

«The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges.»

W. Kohn, A. E. Mattsson, PRL 1998

Random matrix theory "comes to the rescue"

Edge density of free fermions

Bowick, Brézin '91/Forrester '93

$$\rho_N(x) \approx \frac{1}{Nw_N} F_1\left(\frac{x - \sqrt{2N}/\alpha}{w_N}\right)$$

Random matrix theory "comes to the rescue"

Edge density of free fermions

Bowick, Brézin '91/Forrester '93

$$\rho_N(x) \approx \frac{1}{Nw_N} F_1\left(\frac{x - \sqrt{2N}/\alpha}{w_N}\right)$$

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

- Higher order correlations
- e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i
eq j} \langle \delta(y-x_i) \delta(z-x_j)
angle$

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i
eq j} \langle \delta(y-x_i) \delta(z-x_j)
angle$

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$R_n(x_1, \cdots, x_n) = \det_{1 \le i,j \le n} K_N(x_i, x_j)$$
$$K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$$

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i
eq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$R_n(x_1, \cdots, x_n) = \det_{1 \le i,j \le n} K_N(x_i, x_j)$$

$$K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$$
kernel

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$\begin{aligned} R_n(x_1, \cdots, x_n) &= \det_{1 \le i, j \le n} K_N(x_i, x_j) \\ K_N(x, y) &= \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y) \end{aligned} \quad \textbf{kernel} \end{aligned}$$

in particular, the average density is given by $ho_N(x) = rac{1}{N} K_N(x,x)$

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$\begin{cases} R_n(x_1, \cdots, x_n) = \det_{1 \le i, j \le n} K_N(x_i, x_j) \\ K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y) \end{cases} \text{ kernel} \end{cases}$$

in particular, the average density is given by $ho_N(x) = rac{1}{N} \, K_N(x,x)$

Analogue of Wick's theorem: $K_N(x,y) = \langle \Phi_{gs} | \Psi^{\dagger}(x) \Psi(y) | \Phi_{gs} \rangle$

Limiting form of the kernel for trapped fermions at T=O

Bulk limit: when x & y are far from the edge and

and
$$|x-y| \sim \frac{1}{N\rho_N(x)} \equiv \text{inter-particle distance}$$

Limiting form of the kernel for trapped fermions at T=O

Bulk limit: when x & y are far from the edge and

and
$$|x - y| \sim \frac{1}{N\rho_N(x)} \equiv \text{inter-particle distance}$$

 $K_N(x, y) \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - y|}{\ell} \right), \ \ell = \frac{2}{\pi N\rho_N(x)}$
 $\mathcal{K}_{\text{bulk}}(z) = \frac{\sin(2z)}{\pi z}$ Sine-kernel

Limiting form of the kernel for trapped fermions at T=O

Bulk limit: when x & y are far from the edge and

and
$$|x - y| \sim \frac{1}{N\rho_N(x)} \equiv \text{inter-particle distance}$$

 $K_N(x, y) \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - y|}{\ell} \right) , \ \ell = \frac{2}{\pi N\rho_N(x)}$
 $\mathcal{K}_{\text{bulk}}(z) = \frac{\sin(2z)}{\pi z}$ Sine-kernel

Edge scaling limit: for x & y close to the edge $r_{edge} = \sqrt{2N/\alpha}$

$$K_{N}(x,y) \approx \frac{1}{w_{N}} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_{N}}, \frac{y - r_{edge}}{w_{N}} \right) , \ w_{N} = \frac{N^{-1/6}}{\sqrt{2}\alpha}$$
$$\mathcal{K}_{edge}(a,b) = \frac{Ai(a)Ai'(b) - Ai'(a)Ai(b)}{a - b} \quad \text{Airy-kerne}$$

Position of the rightmost fermion at T=0

Position of the rightmost fermion at T=0

Position of the rightmost fermion at T=0

fluctuations of $x_{\max}(T=0)$ are governed by the Tracy-Widom distribution for GUE

Position of the righmost fermion at T=0

Largest (top) eigenvalue of random matrices

 I_{ij} : complex Hermitian $N \times N$ Gaussian random matrix

Recent excitements in statistical physics and mathematics on

 $\lambda_{\max} = \max_{1 \le i \le N} \lambda_i$: largest eigenvalue of J

Typical fluctuations:

- Tracy–Widom distribution
- ubiquitous

KPZ equation, directed polymer, random permutation, sequence alignment,... Largest (top) eigenvalue of random matrices

 I_{ij} : complex Hermitian $N \times N$ Gaussian random matrix

Recent excitements in statistical physics and mathematics on

 $\lambda_{\max} = \max_{1 \le i \le N} \lambda_i$: largest eigenvalue of J

Typical fluctuations:

- Tracy–Widom distribution
- ubiquitous

KPZ equation, directed polymer, random permutation, sequence alignment,...

Free fermions provide (one of) the simplest physical systems where the Tracy-Widom distribution can be observed

What happens at finite temperature

T > 0 ?

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

A† T=0:

bulk:
$$\ell_{\text{bulk}} \sim \frac{1}{\alpha} N^{-1/2}$$

edge: $\ell_{\text{edge}} \sim \frac{1}{\alpha} N^{-1/6}$

A† T=0:

edge:
$$\ell_{
m edge} \sim rac{1}{lpha} N^{-1/6}$$

Thermal de Broglie wave length: $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$

controls the crossover from quantum to classical as T increases

A† T=0:

edge:
$$\ell_{\rm edge} \sim \frac{1}{\alpha} N^{-1/6}$$

Thermal de Broglie wave length: $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$

controls the crossover from quantum to classical as T increases

Bulk: quantum if $\lambda_T > \ell_{\text{bulk}} \Longrightarrow k_B T < \hbar \omega N = E_F$

classical if $\lambda_T < \ell_{\text{bulk}} \Longrightarrow k_B T > \hbar \omega N = E_F$

A† T=0:

bulk:
$$\ell_{\text{bulk}} \sim \frac{1}{\alpha} N^{-1/2}$$

edge:
$$\ell_{\rm edge} \sim rac{1}{lpha} N^{-1/6}$$

Thermal de Broglie wave length: $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$

controls the crossover from quantum to classical as T increases

Bulk: quantum if $\lambda_T > \ell_{\text{bulk}} \Longrightarrow k_B T < \hbar \omega N = E_F$

classical if $\lambda_T < \ell_{\text{bulk}} \Longrightarrow k_B T > \hbar \omega N = E_F$

Edge: quantum if $\lambda_T > \ell_{edge} \Longrightarrow k_B T < \hbar \omega N^{1/3}$

classical if $\lambda_T < \ell_{edge} \Longrightarrow k_B T > \hbar \omega N^{1/3}$

N free fermions in 1d-harmonic trap at T > 0

N free fermions in 1d-harmonic trap at T > 0

N free fermions in 1d-harmonic trap at T > 0

Probability density function (PDF) of the positions $x'_i s$

$$P_{\text{joint}}(x_{1}, \dots x_{N}) = \frac{1}{N!Z_{N}(\beta)} \sum_{k_{1} < \dots < k_{N}} \left[\det_{1 \le i,j \le N}(\varphi_{k_{i}}(x_{j})) \right]^{2} e^{-\beta(\epsilon_{k_{1}} + \dots + \epsilon_{k_{N}})}$$
$$Z_{N}(\beta) = \sum_{k_{1} < k_{2} < \dots < k_{N}} e^{-\beta(\epsilon_{k_{1}} + \epsilon_{k_{2}} + \dots + \epsilon_{k_{N}})} \quad \& \quad \varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!} \right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$
N free fermions in 1d-harmonic trap at T > 0

Probability density function (PDF) of the positions $x'_i s$

$$P_{\text{joint}}(x_{1}, \dots x_{N}) = \frac{1}{N! Z_{N}(\beta)} \sum_{k_{1} < \dots < k_{N}} \left[\det_{1 \le i, j \le N}(\varphi_{k_{i}}(x_{j})) \right]^{2} e^{-\beta(\epsilon_{k_{1}} + \dots + \epsilon_{k_{N}})}$$
$$Z_{N}(\beta) = \sum_{k_{1} < k_{2} < \dots < k_{N}} e^{-\beta(\epsilon_{k_{1}} + \epsilon_{k_{2}} + \dots + \epsilon_{k_{N}})} \quad \& \quad \varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi} 2^{k} k!} \right]^{1/2} e^{-\frac{\alpha^{2} x^{2}}{2}} H_{k}(\alpha x)$$

Ornstein-Uhlenbeck (OU) process starting at $X_0 = x_0$

 $dX_{\tau} = -\mu_0 X_{\tau} d\tau + dB_{\tau}$ $\mathbb{P}(X_{\tau} \in dx | X_{\tau_0} = x_0) = P_{\text{OU}}(x, \tau | x_0, \tau_0) dx$

• Ornstein-Uhlenbeck (OU) process starting at $X_0 = x_0$

$$dX_{\tau} = -\mu_0 X_{\tau} d\tau + dB_{\tau}$$
$$\mathbb{P}(X_{\tau} \in dx | X_{\tau_0} = x_0) = P_{\text{OU}}(x, \tau | x_0, \tau_0) dx$$

Time-periodic OU on the time interval $[0,\beta]$

conditioned to be periodic, i.e., $ilde{X}_0 = ilde{X}_eta$

• Ornstein-Uhlenbeck (OU) process starting at $X_0 = x_0$

$$dX_{\tau} = -\mu_0 X_{\tau} d\tau + dB_{\tau}$$
$$\mathbb{P}(X_{\tau} \in dx | X_{\tau_0} = x_0) = P_{\text{OU}}(x, \tau | x_0, \tau_0) dx$$

Time-periodic OU on the time interval $[0,\beta]$

conditioned to be periodic, i.e., $\tilde{X}_0 = \tilde{X}_\beta$

Ornstein-Uhlenbeck (OU) process starting at $X_0 = x_0$

$$dX_{\tau} = -\mu_0 X_{\tau} d\tau + dB_{\tau}$$
$$\mathbb{P}(X_{\tau} \in dx | X_{\tau_0} = x_0) = P_{\text{OU}}(x, \tau | x_0, \tau_0) dx$$

Time-periodic OU on the time interval $[0,\beta]$

conditioned to be periodic, i.e., $X_0 = X_\beta$

• A single particle in a harmonic potential $\hat{H} = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\mu_0^2 x^2 - \frac{\mu_0}{2}$

PDF of the position of the particle at finite temperature $T = 1/\beta$

$$P_{\beta}(x) = \sum_{k=0}^{\infty} \frac{e^{-\beta\epsilon_k}}{Z_1} |\varphi_k(x)|^2$$

• A single particle in a harmonic potential $\hat{H} = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\mu_0^2 x^2 - \frac{\mu_0}{2}$

PDF of the position of the particle at finite temperature $T = 1/\beta$

$$P_{\beta}(x) = \sum_{k=0}^{\infty} \frac{e^{-\beta\epsilon_k}}{Z_1} |\varphi_k(x)|^2 = \sqrt{\frac{\mu_0}{\pi} \tanh\left(\frac{\beta\mu_0}{2}\right)} e^{-\mu_0 \tanh\left(\frac{\beta\mu_0}{2}\right)x^2}$$

• A single particle in a harmonic potential $\hat{H} = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\mu_0^2 x^2 - \frac{\mu_0}{2}$

PDF of the position of the particle at finite temperature $T = 1/\beta$

$$P_{\beta}(x) = \sum_{k=0}^{\infty} \frac{e^{-\beta\epsilon_{k}}}{Z_{1}} |\varphi_{k}(x)|^{2} = \sqrt{\frac{\mu_{0}}{\pi} \tanh\left(\frac{\beta\mu_{0}}{2}\right)} e^{-\mu_{0} \tanh\left(\frac{\beta\mu_{0}}{2}\right)x^{2}}$$
$$= \frac{1}{Z_{1}} P_{\text{OU}}(x,\beta|x,0)$$

• A single particle in a harmonic potential $\hat{H} = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\mu_0^2x^2 - \frac{\mu_0}{2}$

PDF of the position of the particle at finite temperature T=1/eta

N fermions at finite temperature

PDF of the positions of the particle at finite temperature/ β

$$P_{\beta}(x_1, \cdots, x_N) = \frac{1}{Z_N(\beta)} \sum_{E} |\psi_E(x_1, \cdots, x_N)|^2 e^{-\beta E}$$

sum over the N-particle
eigenstates

N fermions at finite temperature

PDF of the positions of the particle at finite temperature/ β

$$P_{\beta}(x_1, \cdots, x_N) = \frac{1}{Z_N(\beta)} \sum_{E} |\psi_E(x_1, \cdots, x_N)|^2 e^{-\beta E}$$

sum over the N-particle
eigenstates

$$=\frac{1}{N!Z_N(\beta)}P_{\mathrm{OU}}^{(N)}(x_1,\cdots,x_N;\beta|x_1,\cdots,x_N;0)$$

N fermions at finite temperature

PDF of the positions of the particle at finite temperature/ β

$$\tilde{X}_{\tau}$$

'17

Correlation kernel for $N\,$ free fermions at T > O

• For $N \gg 1$ the canonical and grand-canonical ensembles coincide

Correlation kernel for $N\,$ free fermions at T > O

For $N \gg 1$ the canonical and grand-canonical ensembles coincide

number of

particles N is fixed

For $N \gg 1$ free fermions at T>0 in the canonical ensemble is a determinantal process

n-point correlation function $R_n(x_1, \dots, x_n) \approx \det_{1 \le i, j \le n} K_\mu(x_i, x_j)$

chemical potential

 μ is fixed

Correlation kernel for $N\,$ free fermions at T > O

For $N \gg 1$ the canonical and grand-canonical ensembles coincide

number of

particles N is fixed

For $N \gg 1$ free fermions at T>0 in the canonical ensemble is a determinantal process

n-point correlation function $R_n(x_1, \dots, x_n) \approx \det_{1 \le i, j \le n} K_\mu(x_i, x_j)$

chemical potential

 μ is fixed

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

 \blacksquare High temperature scaling limit: $N \to \infty \;,\; T \sim N \;,\; x \sim \sqrt{T}$

$$\rho_N(x,T) \sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N\hbar\omega}{T} = y, x\sqrt{\frac{m\omega^2}{2T}} = z\right),$$

$$R(y,z) = -\frac{1}{\sqrt{2\pi y}} \operatorname{Li}_{1/2} \left(-(e^y - 1) e^{-z^2} \right) \quad \operatorname{Li}_n(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^n}$$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

 \blacksquare High temperature scaling limit: $N \to \infty \;,\; T \sim N \;,\; x \sim \sqrt{T}$

$$\begin{split} \rho_N(x,T) &\sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N\,\hbar\,\omega}{T} = y, x\,\sqrt{\frac{m\,\omega^2}{2\,T}} = z\right),\\ R(y,z) &= -\frac{1}{\sqrt{2\pi\,y}} \operatorname{Li}_{1/2}\left(-\left(e^y - 1\right)\,e^{-z^2}\right) \quad \operatorname{Li}_n(x) = \sum_{k=1}^\infty \frac{x^k}{k^n} \end{split}$$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

• High temperature scaling limit: $N \to \infty$, $T \sim N$, $x \sim \sqrt{T}$

$$\rho_N(x,T) \sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N\hbar\omega}{T} = y, x\sqrt{\frac{m\omega^2}{2T}} = z\right),$$

$$R(y,z) = -\frac{1}{\sqrt{2\pi y}} \operatorname{Li}_{1/2} \left(-(e^y - 1) e^{-z^2} \right)$$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N \to \infty$, $T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N \to \infty$, $T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N \to \infty$, $T \sim N^{1/3} \ll N$

Edge kernel for N free fermions for T > O

$$K_{\mu}(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N \to \infty \;,\; T \sim b^{-1} \, N^{1/3} \ll N$

when x & x' are close to the edge $r_{\rm edge} = \sqrt{2N/\alpha}$

$$K_{\mu}(x,x') \approx \frac{1}{w_N} \mathcal{K}_{\text{edge}} \left(\frac{x - r_{\text{edge}}}{w_N}, \frac{x' - r_{\text{edge}}}{w_N} \right) , \ w_N = \frac{N^{-1/6}}{\sqrt{2}\alpha}$$

Edge kernel for N free fermions for T > 0

$$K_{\mu}(x,x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N \to \infty$, $T \sim b^{-1} N^{1/3} \ll N$

when x & x' are close to the edge $r_{edge} = \sqrt{2N/\alpha}$

$$K_{\mu}(x,x') \approx \frac{1}{w_N} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_N}, \frac{x' - r_{edge}}{w_N} \right) , \ w_N = \frac{N^{-1/6}}{\sqrt{2}\alpha}$$
$$\mathcal{K}_{edge}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-b\,u} + 1} du$$

Dean, Le Doussal, Majumdar, G. S. '15 generalization of the Airy-kernel see also Johansson '07, Dong-Liechty '18

Edge kernel for N free fermions for T > O

$$K_{\mu}(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N \to \infty$, $T \sim b^{-1} N^{1/3} \ll N$

when x & x' are close to the edge $r_{edge} = \sqrt{2N/\alpha}$

$$K_{\mu}(x,x') \approx \frac{1}{w_N} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_N}, \frac{x' - r_{edge}}{w_N} \right) , \ w_N = \frac{N^{-1/6}}{\sqrt{2\alpha}}$$
$$\mathcal{K}_{edge}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-b\,u} + 1} du$$

Dean, Le Doussal, Majumdar, G. S. '15 generalization of the Airy-kernel see also Johansson '07, Dong-Liechty '18

Universal behavior, i.e., independent of the confining potential $V(x) \sim |x|^p$ Dean, Le Doussal, Majumdar, G. S. '16

Position of the rightmost fermion at finite but low TV(x) $T \sim b^{-1} N^{1/3}$ $r_{\rm edge} = \sqrt{2N}/\alpha$ $w_N = \frac{N^{-1/6}}{\sqrt{2}\alpha}$ $x_{\max}(T > 0)$ $\blacktriangleright x$ $\sqrt{2N}$ $\sqrt{2N}$ α lpha

$$\Pr\left(x_{\max}(T>0) \le M\right) \approx \mathcal{F}\left(\frac{M-r_{\text{edge}}}{w_N}\right)$$
$$\mathcal{F}(\xi) = \det\left(I - P_{\xi}K_{\text{edge}}P_{\xi}\right), \ K_{\text{edge}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1+u)Ai(z_2+u)}{e^{-b\,u}+1} \, du$$

$$\Pr\left(x_{\max}(T>0) \le M\right) \approx \mathcal{F}\left(\frac{M-r_{\text{edge}}}{w_N}\right)$$
$$\mathcal{F}(\xi) = \det\left(I - P_{\xi}K_{\text{edge}}P_{\xi}\right), \ K_{\text{edge}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1+u)Ai(z_2+u)}{e^{-b\,u}+1} \, du$$

finite T generalization of the Tracy-Widom distribution

Kardar-Parisi-Zhang (KPZ) equation at finite time

KPZ equation in 1+1 dimensions in a curved geometry

(with dimensionless parameters) $\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \eta(x,t)$

Kardar-Parisi-Zhang (KPZ) equation at finite time

KPZ equation in 1+1 dimensions in a curved geometry

(with dimensionless parameters) $\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \eta(x,t)$

Exact solution of the KPZ equation in 1+1 dim. in a curved geometry

Sasamoto, Spohn '10/Calabrese, Le Doussal, Rosso '10/Dotsenko '10/ Amir, Corwin, Quastel '11 Imamura, Sasamoto, Spohn '13

Kardar-Parisi-Zhang (KPZ) equation at finite time

KPZ equation in 1+1 dimensions and curved geometry

(with dimensionless parameters) $\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \eta(x,t)$

 $\langle \eta(x,t)\eta(x',t')\rangle = \delta(x-x')\delta(t-t')$

Time-dependent generating function of the height field

 $g_t(s) = \langle \exp(-e^{h(0,t) + \frac{t}{12} - st^{1/3}}) \rangle , \ g_t(s) = \det(I - P_s K_{\text{KPZ}} P_s)$ $K_{\text{KPZ}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-ut^{1/3}} + 1} \, du$

Connection between fermions at finite temperature and KPZ at finite time

Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T>0)$; $b=N^{1/3}\hbar\omega/T$

$$\Pr(x_{\max}(T > 0) \le M) \approx \mathcal{F}\left(\frac{M - r_{\text{edge}}}{w_N}\right)$$

$$\mathcal{F}(\xi) = \det(I - P_{\xi} K_{\text{edge}} P_{\xi}) , \ K_{\text{edge}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-b\,u} + 1} \, du$$

Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T>0)$; $b=N^{1/3}\hbar\omega/T$

$$\Pr(x_{\max}(T > 0) \le M) \approx \mathcal{F}\left(\frac{M - r_{\text{edge}}}{w_N}\right)$$

$$\mathcal{F}(\xi) = \det(I - P_{\xi} K_{\text{edge}} P_{\xi}) , \ K_{\text{edge}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-b\,u} + 1} \, du$$

KPZ equation: generating function of the height field

$$g_t(s) = \left\langle \exp\left(-e^{h(0,t) + \frac{t}{12} - st^{1/3}}\right) \right\rangle,$$
$$g_t(s) = \det(I - P_s K_{\text{KPZ}} P_s), \ K_{\text{KPZ}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-u t^{1/3}} + 1} \, du$$
Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T>0)$; $b=N^{1/3}\hbar\omega/T$

$$\Pr(x_{\max}(T > 0) \le M) \approx \mathcal{F}\left(\frac{M - r_{\text{edge}}}{w_N}\right)$$
$$\int_{-\infty}^{\infty} Ai(x_0 + u) Ai(x_0 + u)$$

$$\mathcal{F}(\xi) = \det(I - P_{\xi} K_{\text{edge}} P_{\xi}) , \ K_{\text{edge}}(z_1, z_2) = \int_{-\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-b\,u} + 1} \, du$$

KPZ equation: generating function of the height field

$$g_t(s) = \left\langle \exp(-e^{h(0,t) + \frac{t}{12} - st^{1/3}}) \right\rangle,$$

$$g_t(s) = \det(I - P_s K_{\text{KPZ}} P_s), \ K_{\text{KPZ}}(z_1, z_2) = \int_{-\infty}^{\infty} \frac{Ai(z_1 + u)Ai(z_2 + u)}{e^{-ut^{1/3}} + 1} \, du$$

formal connection between the two problems

with $1/T \iff t^{1/3}$ Dean, Le Doussal, Majumdar, G. S. '15

Connection between fermions at finite temperature and KPZ at finite time

Dean, Le Doussal, Majumdar, G. S., PRL '15

Connection between fermions at finite temperature and KPZ at finite time

Dean, Le Doussal, Majumdar, G. S., PRL '15

What happens in d > 1?

Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2} m \omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$

Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2} m \omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$
Global density (at T=0)

$$\rho_N(\mathbf{x}) \approx \frac{1}{N} \left(\frac{m}{2\pi\hbar^2}\right)^{d/2} \frac{\left[\mu - \frac{1}{2}m\omega^2 r^2\right]^{d/2}}{\Gamma(d/2+1)}$$

with $\mu \approx \hbar \omega [\Gamma(d+1) N]^{1/d}$

Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2}m\omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$

Global density (at T=0)

$$\rho_N(\mathbf{x}) \approx \frac{1}{N} \left(\frac{m}{2\pi\hbar^2}\right)^{d/2} \frac{\left[\mu - \frac{1}{2}m\omega^2 r^2\right]^{d/2}}{\Gamma(d/2+1)}$$

with $\mu \approx \hbar \omega [\Gamma(d+1) N]^{1/d}$

Edge density of free fermions

$$\rho_{\text{edge}}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\text{edge}}}{w_N}\right)$$

with $w_N = b_d N^{-\frac{1}{6d}}$ and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

Edge density of free fermions

$$\rho_{\text{edge}}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\text{edge}}}{w_N}\right)$$

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

recall that $F_1(z) = [Ai'(z)]^2 - z[Ai(z)]^2$

Edge density of free fermions

$$\rho_{\text{edge}}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\text{edge}}}{w_N}\right)$$

Z

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

recall that $F_1(z) = [Ai'(z)]^2 - z[Ai(z)]^2$

Edge density of free fermions

$$\rho_{\text{edge}}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\text{edge}}}{w_N}\right)$$

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

Free fermions in a d-dimensional harmonic trap (T=0): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

Free fermions in a d-dimensional harmonic trap (T=0): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

In the bulk

$$K_{N}(\mathbf{x}, \mathbf{y}) \approx \frac{1}{\ell^{d}} \mathcal{K}_{\text{bulk}} \left(\frac{|\mathbf{x} - \mathbf{y}|}{\ell} \right) \quad \text{with} \quad \ell = [N \rho_{N}(\mathbf{x}) \gamma_{d}]^{-1/d}$$
$$\mathcal{K}_{\text{bulk}}(x) = \frac{J_{d/2}(2x)}{(\pi x)^{d/2}}$$

Free fermions in a d-dimensional harmonic trap (T=0): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

In the bulk

$$K_N(\mathbf{x}, \mathbf{y}) \approx \frac{1}{\ell^d} \mathcal{K}_{\text{bulk}} \left(\frac{|\mathbf{x} - \mathbf{y}|}{\ell} \right) \quad \text{with} \quad \ell = [N \rho_N(\mathbf{x}) \gamma_d]^{-1/d}$$
 $\mathcal{K}_{\text{bulk}}(x) = \frac{J_{d/2}(2x)}{(\pi x)^{d/2}}$

At the edge

$$K_{N}(\mathbf{x}, \mathbf{y}) \approx \frac{1}{w_{N}^{d}} \mathcal{K}_{\text{edge}} \left(\frac{\mathbf{x} - \mathbf{r}_{\text{edge}}}{w_{N}}, \frac{\mathbf{y} - \mathbf{r}_{\text{edge}}}{w_{N}} \right)$$

with
$$\mathcal{K}_{\text{edge}}(\mathbf{a}, \mathbf{b}) = \int \frac{d^{d}q}{(2\pi)^{d}} e^{-i\mathbf{q}\cdot(\mathbf{a}-\mathbf{b})} Ai_{1} \left(2^{\frac{2}{3}}q^{2} + \frac{a_{n} + b_{n}}{2^{1/3}} \right)$$
$$a_{n} = \mathbf{a} \cdot \mathbf{r}_{\text{edge}}/r_{\text{edge}} \quad and \quad b_{n} = \mathbf{b} \cdot \mathbf{r}_{\text{edge}}/r_{\text{edge}} \qquad Ai_{1}(z) = \int_{z}^{\infty} Ai(u) du$$

Free fermions in a 2-dimensional rotating harmonic trap

$$\hat{H}(\hat{\mathbf{p}}, \hat{\mathbf{r}}) = \frac{\hat{\mathbf{p}}^2}{2} + \frac{\hat{\mathbf{r}}^2}{2} - \Omega \hat{L}_z$$
$$\hat{L}_z = i(y\partial_x - x\partial_y)$$

Free fermions in a 2-dimensional rotating harmonic trap

$$\hat{H}(\hat{\mathbf{p}}, \hat{\mathbf{r}}) = \frac{\hat{\mathbf{p}}^2}{2} + \frac{\hat{\mathbf{r}}^2}{2} - \Omega \hat{L}_z$$

$$\hat{L}_z = i(y\partial_x - x\partial_y)$$
for $1 - \frac{2}{N} < \Omega < 1$

Joint PDF of the positions z_i of N non-interacting fermions

at T=0 Lacroix-A-Chez-Toine, Majumdar, G. S., PRA '19

$$P_{\text{joint}}(z_1, \cdots, z_N) = \frac{1}{Z_N} \prod_{i < j} |z_i - z_j|^2 e^{-\sum_{k=1}^N |z_k|^2}$$

Free fermions in a 2-dimensional rotating harmonic trap

$$\hat{H}(\hat{\mathbf{p}}, \hat{\mathbf{r}}) = \frac{\hat{\mathbf{p}}^2}{2} + \frac{\hat{\mathbf{r}}^2}{2} - \Omega \hat{L}_z$$

$$\hat{L}_z = i(y\partial_x - x\partial_y)$$
for $1 - \frac{2}{N} < \Omega < 1$

Joint PDF of the positions z_i of N non-interacting fermions

Lacroix-A-Chez-Toine, Majumdar, G. S., PRA '19

$$P_{\text{joint}}(z_1, \cdots, z_N) = \frac{1}{Z_N} \prod_{i < j} |z_i - z_j|^2 e^{-\sum_{k=1}^N |z_k|^2}$$
$$\longleftrightarrow \text{ complex Ginibre matrices}$$

at T=0

What about the interactions ?

Interacting fermions in d=1

$$\hat{\mathcal{H}}_N = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2} + \frac{\hat{r}_i^2}{2} \right] + \sum_{i < j} V(\hat{r}_i - \hat{r}_j)$$

Interacting fermions in d=1

$$\hat{\mathcal{H}}_N = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2} + \frac{\hat{r}_i^2}{2} \right] + \sum_{i < j} V(\hat{r}_i - \hat{r}_j)$$

For generic interaction potential V(x): very little is known

Interacting fermions in d=1

$$\hat{\mathcal{H}}_N = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2} + \frac{\hat{r}_i^2}{2} \right] + \sum_{i < j} V(\hat{r}_i - \hat{r}_j)$$

For generic interaction potential V(x): very little is known

• One special case:
$$V(x_i - x_j) = \frac{\beta/2(\beta/2 - 1)}{(x_i - x_j)^2}$$

Interacting fermions in d=1

$$\hat{\mathcal{H}}_N = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2} + \frac{\hat{r}_i^2}{2} \right] + \sum_{i < j} V(\hat{r}_i - \hat{r}_j)$$

For generic interaction potential V(x): very little is known

• One special case:
$$V(x_i - x_j) = \frac{\beta/2(\beta/2 - 1)}{(x_i - x_j)^2}$$

Ground-state wave function: Stéphan `19

$$|\psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{Z_N(\beta)} e^{-\frac{\beta}{2}\sum_{i=1}^N x_i^2} \prod_{i< j} |x_i - x_j|^\beta$$

Interacting fermions in d=1

$$\hat{\mathcal{H}}_N = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2} + \frac{\hat{r}_i^2}{2} \right] + \sum_{i < j} V(\hat{r}_i - \hat{r}_j)$$

For generic interaction potential V(x): very little is known

• One special case:
$$V(x_i - x_j) = \frac{\beta/2(\beta/2 - 1)}{(x_i - x_j)^2}$$

Ground-state wave function: Stéphan '19

$$|\psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{Z_N(\beta)} e^{-\frac{\beta}{2}\sum_{i=1}^N x_i^2} \prod_{i< j} |x_i - x_j|^{\beta}$$

Gaussian β -ensemble of random matrices

Very rich and universal edge physics for trapped free fermions unveiled by RMT methods

- Very rich and universal edge physics for trapped free fermions unveiled by RMT methods
- Non-interacting fermions in 1d harmonic potential:
 - ▶ T=0: exact mapping to random matrices (GUE)
 - T>O: (surprising) connection to stochastic growth model (KPZ)

- Very rich and universal edge physics for trapped free fermions unveiled by RMT methods
- Non-interacting fermions in 1d harmonic potential:
 - T=0: exact mapping to random matrices (GUE)
 - T>O: (surprising) connection to stochastic growth model (KPZ)

Trapped fermions in higher dimensions d>1 (determinantal processes)
 techniques from determinantal processes

- Very rich and universal edge physics for trapped free fermions unveiled by RMT methods
- Non-interacting fermions in 1d harmonic potential:
 - T=0: exact mapping to random matrices (GUE)
 - T>O: (surprising) connection to stochastic growth model (KPZ)

- Trapped fermions in higher dimensions d>1 (determinantal processes)
 techniques from determinantal processes
- Linear statistics (Grela, Majumdar, G. S., PRL '17 & Grabsch, Majumdar, G. S., Texier 2017)

- Very rich and universal edge physics for trapped free fermions unveiled by RMT methods
- Non-interacting fermions in 1d harmonic potential:
 - T=0: exact mapping to random matrices (GUE)
 - T>O: (surprising) connection to stochastic growth model (KPZ)

- Trapped fermions in higher dimensions d>1 (determinantal processes)
 techniques from determinantal processes
- Linear statistics (Grela, Majumdar, G. S., PRL '17 & Grabsch, Majumdar, G. S., Texier 2017)
- Can one observe these properties in cold atoms experiments ?

Some open questions

Some open questions

Effects of interactions ?

Effects of disorder/impurities ?

Dynamics of non-interacting fermions (« quantum quench »)