

Huntingdon and Broad Top Mountain RR

Hanbury Brown and Twiss effect for bosons and fermions

DPP - fermions 2019, Lille 7 Feb 2019

- I. HB&T for light (stars & history)
- 2. HB&T for particles (atoms)
- 3. The Hong Ou Mandel effect

Fluctuations: "Noise is the chief product and authenticating sign of civilization." Ambrose Bierce

Number fluctuations in an ideal quantum gas $\delta N^2 = \langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle + \langle N \rangle^2 / z$

 $z = (\Delta p \Delta x/h)^3$ is the number of phase space cells in the volume.

 $\langle N \rangle$ "... if the molecules were independent"

 $\langle N \rangle^2$ "... interference fluctuations" interferenzschwankungen

"... a mutual influence between molecules of a currently altogether puzzling nature."

eine gegenseitige Beeinflussung der Moleküle von vorläufig ganz rätselhafter Art

Michelson: stellar interferometer

Fringe contrast indicates the spatial coherence of the source. When d is too big, fringes disappear:

 $\theta \sim \lambda/d$

Michelson measured the angular diameters of 6 stars.

Principle of stellar interferometry

 $\theta_{max} = s/L \sim \lambda/d$ If the source is not monochromatic, fewer fringes

Fringes from a real star

from the European Southern Observatory

Hanbury Brown: intensity interferometry

The noise in two optical (or radio) telescopes should be correlated for sufficiently small separations *d*. Reminiscent of Michelson's interferometer to measure stellar diameters, but less sensitive to vibrations or atmospheric fluctuation.

The Hanbury Brown Twiss experiment (Nature, 1956)

"The experiment shows beyond question that the photons in the two coherent beams of light are correlated and that this correlation is preserved in the process of photoelectric emission."

Measurement of a stellar diameter (1957)

Independent photons from different points on a star "stick together" - photon bunching

Stellar interferometer in Australia 1960's

Figure 1. Aerial photo and illustration of the original HBT apparatus. They have been extracted from Ref.[1].

(Classical) speckle interpretation

 $g^{(2)}(\Delta x) = \langle I(x) \ I(x + \Delta x) \rangle / \langle I \rangle^{2}$ large $\Delta x \rightarrow$ uncorrelated: $\langle I_{1} \ I_{2} \rangle = \langle I_{1} \rangle \langle I_{2} \rangle$ $\Delta x = 0:$ $\langle I^{2} \rangle > \langle I \rangle^{2}$ thermal source (Einstein): $\langle I^{2} \rangle = 2 \langle I \rangle^{2}$

 $l_{\rm C} = L\lambda/s$

Time dependent speckle

Photon interpretation (Fano, Am. J. Phys. 1961)

Interference:

 $P = |\langle 1|a\rangle \langle 2|b\rangle \pm \langle 1|b\rangle \langle 2|a\rangle|^2$

+ for bosons, – for fermions. After summing over extended source, interference term survives if

 $ds / \lambda L \ll 1$

A simple classical effect corresponds to a subtle quantum one: photons are not independent.

What about a laser?

LASER

Coherence length is very long. Strong correlations? Some said "yes"

Glauber, PRL 10, 84 (1963)

"The fact that photon correlations are enhanced by narrowing the spectral bandwidth has led to a prediction of large-scale correlations to be observed in the beam of an optical maser. We shall indicate that this prediction is misleading and follows from an inappropriate model of the maser beam."

Temporel correlations in a laser: measurement

Arecchi, Gatti, Sona, Phys. Lett. 1966 Temporal fluctations are only due to shot noise.

$$g^{(2)}(\tau) = 1$$

Fig. 1. Conditional probability $p_{\rm C}(\tau)$ of a second count occurring at a time τ after a first has occurred at time $\tau = 0$.

Photon interpretation using quantized fields 1963

Roy Glauber Les Houches, 1965 Quantum Electronics p. 65-185

$$\hat{E} = \hat{E}^{+} + \hat{E}^{-}$$

$$\hat{E}^{+} = \sum_{\omega} \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} e^{-i\omega t} \hat{a}_{\omega}$$

$$\langle I(t)I(t')\rangle = \langle \hat{E}^{-}(t)\hat{E}^{+}(t)\hat{E}^{-}(t')\hat{E}^{+}(t')\rangle$$

$$= \langle \hat{E}^{-}(t)\hat{E}^{-}(t')\hat{E}^{+}(t')\hat{E}^{+}(t)\rangle + \delta(t-t')\langle \hat{E}^{-}(t)\hat{E}^{+}(t)\rangle$$

joint, 2 photon detection prob.

shot noise

for thermal bosons:

$$\langle \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_l \rangle = \langle \hat{a}_i^{\dagger} \hat{a}_i \rangle \langle \hat{a}_k^{\dagger} \hat{a}_k \rangle (\delta_{i,k} \delta_{j,l} + \delta_{i,l} \delta_{j,k})$$

Einstein formula recovered For a laser there is only one mode: no interference. For fermions, use anti-commutation: minus sign.

Stationary processes

$$g^{(1)}(\tau) = \frac{\langle E(t) E^+(t+\tau) \rangle}{\langle E(t) E^+(t) \rangle} = \frac{\tilde{\rho}_1(\tau)}{\rho_1(0)} \qquad \text{Interference contrast}$$
$$g^{(2)}(\tau) = \frac{\langle E(t+\tau) E(t) E^+(t) E^+(t) E^+(t+\tau) \rangle}{\langle E(t) E^+(t) \rangle \langle E(t) E^+(t) \rangle} = \frac{\rho_2(0,\tau)}{\rho_1(0) \rho_1(\tau)}$$

Gaussian processes

$$g^{(2)}(\tau) = 1 + \left|g^{(1)}(\tau)\right|^2$$

Not true for a laser nor for "non-classical" light sources Before HBT and lasers, $g^{(2)}$ was ignored

Why?

- Advances in quantum optics, awareness of quantum and classical coherence theory
- Possibility to study bosons and fermions
- With our without interactions (non-linearities)
- Cold atoms and BEC's provide long coherence times
- Distinction between temporal and spatial coherence is blurred

Experiments with atoms

Metastable helium and 3D detection

$$2^{3}S_{1}$$
 (He*)
 $1^{1}S_{0}$
 $1^{1}S_{0}$

- detection by µ-channel plate (He* has 20 eV)
- single atom detection
 25% quantum efficiency
- ~ 200 µm horizonta res.
 10⁵ detectors in //
- ~ 20 μ m vertical res.
- ~ 200 ns deadtime

A "time of flight" observation

trap

typically 10^5 atoms time of flight ~ 300 ms width of TOF ~ 10 ms we record x,y,t for every detected atom

detector

Détecteur Sensible en Position

Atoms dropped onto detector

Normalized correlation functions

M. Schellekens et al. *Science*, **310**, 648 (2005) T. Jeltes et al. *Nature* **445**, 402 (2007) comparison of a bose gas, a BEC and a fermi gas

Higher order (bosons)

 $A_n \sim n!$

Dall et al. Nature Phys. 2013, DOI: 10.1038/NPHYS2632

In situ imaging the quantum gas microscope

More general 2 particle interference

2 particles at a beam splitter

I particle at each input \rightarrow 4 possibilities:

Hong Ou Mandel effect: only 2 possibilities

Hong, Ou and Mandel PRL 59, 2044 (1987)

2 boson fields at a beam splitter

I particle at each input \rightarrow 4 QM amplitudes:

independent of relative phase; no classical waves either

Experimental sequence

- beam splitter use Bragg diffraction
- t = 0 pair creation
- t_1 mirror exchanges k_a and k_b $t_1 = 500 \ \mu$ s
- t₂ beam splitter mixes 2 modes
- atoms fall to detector

HOM correlation

n.b. $t_2 - t_1 = 500 \ \mu s$

Lopes et al., Nature 520, 66 (2015)

2 fermi fields at a beam splitter

I particle at each input \rightarrow 4 QM amplitudes:

the interference effect is absent (less dramatic)

